Abstract
By evaluating the changes of antioxidant enzyme activity, antioxidant capacity, metabolites, glycogen and lactic acid content in tissues, the effects of different packaging oxygenation modes and transport road conditions on oxidative stress of grouper during waterborne transport were studied. The results showed that the antioxidant enzyme activity, antioxidant capacity and metabolites of grouper under continuous aeration and low oxygen vibration changed non-significantly, which indicated that the body could regulate and maintain the balance of antioxidant system. However, the activities of antioxidant enzymes, antioxidant capacity, lipid metabolites and anaerobic metabolic material production in grouper under very low dissolved oxygen and continuous aeration, and the strong vibration environment changed significantly with the prolongation of transport time. It indicated that very low dissolved oxygen content and the severe vibration could lead to a sharp increase in the content of free radicals in the body, which couldn’t be cleared in time, and the oxidative stress reaction was intense, destroying the balance of antioxidant system. It was concluded that different packaging oxygenation modes needed to be designed to keep the suitable alive rate, according to the distance and conditions of the transportation routing.
Publication Date
8-28-2019
First Page
137
Last Page
142,182
DOI
10.13652/j.issn.1003-5788.2019.08.026
Recommended Citation
Bo, WU and Jing, XIE
(2019)
"Effects of the dissolved oxygen level and the vibration on oxidative stress of grouper during water transport,"
Food and Machinery: Vol. 35:
Iss.
8, Article 26.
DOI: 10.13652/j.issn.1003-5788.2019.08.026
Available at:
https://www.ifoodmm.cn/journal/vol35/iss8/26
References
[1] 张涛, 吴燕燕, 林婉玲. 石斑鱼的营养、保鲜与加工技术现状[J]. 食品工业科技, 2018, 39(8): 324-329, 334.
[2] 周燕侠. 石斑鱼瞄准大众化消费[J]. 科学养鱼, 2015(1): 72.
[3] 王大鹏, 曹占旺, 谢达祥, 等. 石斑鱼的研究进展[J]. 南方农业学报, 2012, 43(7): 1 058-1 065.
[4] TSENG W Y. Prospects for commercial netcage culture of red gtouper (Epinephelusakaara T. & S.) in hong kong[J]. Journal of The World Aquaculture Society, 2010, 14(1/2/3/4): 650-660.
[5] YASHIRO R. Overview of grouper aquacultute in Thailand[M]. Taipei: Aquaculture of Grouper High Point Press, 2008: 143-154.
[6] WU Shu. Hypoxia: From molecular responses to ecosystem responses[J]. Marine Pollution Bulletin, 2002, 45(1): 35-45.
[7] CHABOT D, DUTIL J D. Reduced growth of Atlantic cod in non-lethal hypoxic conditions[J]. Journal of Fish Biology, 1999, 55(3): 472-491.
[8] 边云飞. 氧化应激与心血管疾病[M]. 北京: 军事医学科学出版社, 2012.
[9] 胡利双. 低氧对鲢生理生化指标和心肌细胞凋亡的影响[D]. 重庆: 西南大学, 2017.
[10] 熊向英, 黄国强, 彭银辉, 等. 低氧胁迫对鲻幼鱼生长、能量代谢和氧化应激的影响[J]. 水产学报, 2016, 40(1): 73-82.
[11] 陈世喜, 王鹏飞, 区又君, 等. 急性和慢性低氧胁迫对卵形鲳鲹幼鱼肝组织损伤和抗氧化的影响[J]. 动物学杂志, 2016, 51(6): 1 049-1 058.
[12] ROMAIN L, YOANN T, LAURE P, et al. Modeling the impact of hypoxia on the energy budget of Atlantic cod in two populations of the Gulf of Saint-Lawrence, Canada[J]. Journal of Sea Research, 2019, 143: 243-253
[13] 王晓雯, 朱华, 马国庆. 高溶氧对西伯利亚鲟幼鱼非特异性免疫指标的影响[J]. 四川农业大学学报, 2017, 35(1): 93-98.
[14] 况新宇. 高溶氧对西伯利亚鲟、杂交鲟生长、氧化应激及免疫功能的影响[D]. 大连: 大连海洋大学, 2016: 10-15.
[15] HOSFELD C D, HANDELAND S O, FIVELSTAD S, et al. Physiological effects of normbaric environmental hyperoxia on Atlantic salmon (Salmo salar L.) presmolts[J]. Aquaculture, 2010, 308(1/2): 28-33.
[16] LI Meng-xiao, WANG Xiao-dan, QI Chang-le, et al. Metabolic response of Nile tilapia (Oreochromis niloticus) to acute and chronic hypoxia stress[J]. Aquaculture, 2018, 495: 187-195.
[17] 张饮江, 黎臻, 谢文博, 等. 金鱼对低温、振动胁迫应激反应的试验研究[J]. 水产科技情报, 2012, 39(3): 116-122.
[18] 张宇雷, 管崇武. 船载振动胁迫对斑石鲷影响实验研究[J]. 渔业现代化, 2017, 44(3): 29-34.
[19] 张玉晗, 谢晶. 低温休眠预处理对海鲈无水保活效果的影响[J/OL]. 食品科学. (2018-12-15) [2019-02-02]. http://kns.cnki.net/kcms/detail/11.2206.TS.20180622.0953.002.html.
[20] 吴波, 谢晶. 石斑鱼有水活运工艺中温度、盐度的优化[J/OL]. 食品科学. (2019-01-04)[2019-02-02]. http://kns.cnki.net/kcms/detail/11.2206.ts.20190102.1529.107.html.
[21] 朱学旺, 田光明. 制定室内模拟运输试验条件的一种方法[J]. 环境技术, 2009, 27(3): 7-9.
[22] FERNANDEZ-DIAZ C, KOPECKA J, CANAVATE J P, et al. Variations on development and stress defences in Solea senegalensis larvae fed on live and microencapsulated diets[J]. Aquaculture, 2006, 251(2/3/4): 573-584.
[23] ALMEIDA J A, DINIZ Y S, MARQUES S F G, et al. The use of the oxidative stress responses as biomarkers in Nile tilapia (Oreochromis niloticus) exposed to in vivo cadmium contamination[J]. Environment. International., 2002, 27(8): 673-679.
[24] 孙鹏, 柴学军, 尹飞, 等. 运输胁迫下日本黄姑鱼肝脏抗氧化系统的响应[J]. 海洋渔业, 2014, 36(5): 469-474.
[25] 吴波, 谢晶. 鱼类保活运输中应激反应诱发因素及其影响研究进展[J]. 食品与机械, 2018, 34(7): 169-172, 203.
[26] 刘旭佳, 黄国强, 彭银辉. 不同溶解氧水平对鲻生长、能量代谢和氧化应激的影响[J]. 南方水产科学, 2015, 11(4): 88-94.
[27] 常志成, 温海深, 张美昭, 等. 溶解氧水平对花鲈幼鱼氧化应激与能量利用的影响及生理机制[J]. 中国海洋大学学报: 自然科学版, 2018, 48(7): 20-28.
[28] 李洁, 唐夏, 张灵燕, 等. 溶解氧水平对褐牙鲆幼鱼能量代谢和氧化应激的影响研究[J]. 广西科学院学报, 2015, 31(1): 22-27.