Abstract
LED is a kind of green and environment-friendly cold light source, which has the advantages of non-toxicity, non-residue and wide application prospects in killing foodborne pathogenic bacteria in fruit and vegetable postharvest by using LED illumination technology. In this paper, the characteristics, sterilization mechanism and sterilization effect of visible and ultraviolet LED lamps were summarized. The sterilization effect of visible and ultraviolet LED lamps assisted by several different photosensitizers, as well as the dosage, effect and strains of the photosensitizers used werealso introduced. Finally, the existing problems and the future development direction of LED illumination sterilization technology were proposed.
Publication Date
8-28-2019
First Page
155
Last Page
160
DOI
10.13652/j.issn.1003-5788.2019.08.029
Recommended Citation
Yuchen, ZHANG and Jing, XIE
(2019)
"Application and research progress of LED light sterilization technology in fresh-keeping processing of fruit and vegetables,"
Food and Machinery: Vol. 35:
Iss.
8, Article 29.
DOI: 10.13652/j.issn.1003-5788.2019.08.029
Available at:
https://www.ifoodmm.cn/journal/vol35/iss8/29
References
[1] D'SOUZA C, YUK H G, KHOO G H, et al. Application of light-emitting diodes in food production, postharvest preservation, and microbiological food safety[J]. Comprehensive Reviews in Food Science & Food Safety, 2015, 14(6): 719-740.
[2] 阎瑞香. 低温条件下不同LED光源对芦笋颜色变化的影响[C]//第六届中国冷冻冷藏新技术、新设备研讨会. 北京: 中国制冷空调工业协会, 2013: 194-198.
[3] MANZOCCO L, QUARTA B, DRI A. Polyphenoloxidase inactivation by light exposure in model systems and apple derivatives[J]. Innovative Food Science & Emerging Technologies, 2009, 10(4): 506-511.
[4] 王希杰. 我国食品质量安全与全面质量管理探讨[J]. 食品安全导刊, 2015, 1(18): 32-33.
[5] 周伟. 低温下单色LED和短波UV照射对上海青贮藏品质调控的研究[D]. 广州: 华南理工大学, 2016: 11-12.
[6] DENBAARS S P, FEEZELL D, KELCHNER K, et al. Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays[J]. Acta Materialia, 2013, 61(3): 945-951.
[7] NELSON J A, BRUCE B. Economic analysis of greenhouse lighting: light emitting diodes vs high intensity discharge fixtures[J]. Plos One, 2014, 9(6): e99010.
[8] DUTTA GUPTA S, JATOTHV B. Fundamentals and applications of light-emitting diodes (LEDs) in invitro plant growth and morphogenesis[J]. Plant Biotechnology Reports, 2013, 7(3): 211-220.
[9] 詹丽娟, 马亚丹, 张翠翠. 发光二极管(LED)照射调控果蔬采后贮藏保鲜研究进展[J]. 食品与发酵工业, 2018, 44(4): 269-269, 278.
[10] KIM M J, MIK-KRAJNIK M, KUMAR A, et al. Inactivation by 405±5 nm light emitting diode on Escherichia coli O157:H7, Salmonella Typhimurium, and Shigella sonnei under refrigerated condition might be due to the loss of membrane integrity[J]. Food Control, 2016, 59(2): 99-107.
[11] KUMAR A, GHATE V, KIM M J, et al. Kinetics of bacterial inactivation by 405 nm and 520 nm light emitting diodes and the role of endogenous coproporphyrin on bacterial susceptibility[J]. Journal of Photochemistry & Photobiology B Biology, 2015, 149(9): 37-44.
[12] ENDARKO E, MACLEAN M, TIMOSHKIN I V, et al. High-intensity 405 nm light inactivation of Listeria monocytogenes[J]. Photochemistry and Photobiology, 2012, 88(5): 1 280-1 286.
[13] KUMAR A, GHATE V, KIM M J, et al. Inactivation and changes in metabolic profile of selected foodborne bacteria by 460 nm LED illumination[J]. Food Microbiology, 2017, 63(5): 12-21.
[14] JOSEWIN S W, KIM M J, YUK H G. Inactivation of Listeria monocytogenes and Salmonella spp. on cantaloupe rinds by blue light emitting diodes (LEDs)[J]. Food Microbiology, 2018, 76(7): 219-225.
[15] GUFFEY J S, WILBORN J. Effects of combined 405 nm and 880 nm light on Staphylococcus aureus and Pseudomonas aeruginosa in vitro[J]. Photomedicine & Laser Surgery, 2006, 24(6): 680-683.
[16] 王冬雷, 王彦国, 凌云. LED紫外杀菌装置: 中国, 201320878486.X[P]. 2014-08-13.
[17] JEON M J, HA J W. Efficacy of UV-A, UV-B, and UV-C irradiation on inactivation of foodborne pathogens in different neutralizing buffer solutions[J]. LWT-Food Science and Technology, 2018, 98(2): 591-597.
[18] 方言. 紫外发光二极管[J]. 技术与市场, 2002, 32(12): 13.
[19] 范林林, 左进华, 高丽朴, 等. LED应用于蔬菜保鲜领域的研究进展[J]. 安徽农业科学, 2017, 45(8): 89-92.
[20] OLIVEIRA E F D, TOSATI J V, TIKEKAR R V, et al. Antimicrobial activity of curcumin in combination with light against Escherichia coli O157:H7 and Listeria innocua: Applications for fresh produce sanitation[J]. Postharvest Biology & Technology, 2018, 137(4): 86-94.
[21] 任文霞, 李建科. 冷杀菌技术及其在食品中应用[J]. 粮食与油脂, 2007, 17(12): 22-23.
[22] 闫岩, 郦和生, 任志峰. 紫外杀菌技术的研究现状[J]. 石化技术, 2011, 18(4): 60-63.
[23] 顾雪锋, 杨海真. 污水处理中紫外线消毒技术的研究进展[J]. 环境科技, 2003, 16(3): 33-34.
[24] KIM D K, KIM S J, KANG D H. Bactericidal effect of 266 to 279 nm wavelength UVC-LEDs for inactivation of Gram positive and Gram negative foodborne pathogenic bacteria and yeasts[J]. Food Research International, 2017, 97(8): 280-287.
[25] KIM Y H, JEONG S G, BACK K H, et al. Effect of various conditions on inactivation of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in fresh-cut lettuce using ultraviolet radiation[J]. International Journal of Food Microbiology, 2013, 166(3): 349-355.
[26] GONZALES F P, MAISCH T. Photodynamic inactivation for controlling Candida albicans infections[J]. Fungal Biol, 2012, 116(1): 1-10.
[27] ACHYUT A, ROOPESH M S, KAREN K, et al. Ultraviolet-C light inactivation of Escherichia coli O157:H7 and Listeria monocytogenes on organic fruit surfaces[J]. International Journal of Food Microbiology, 2015, 210(9): 136-142.
[28] YUN Juan, YAN Rui-xiang, FAN Xue-tong, et al. Fate of E. coli O157:H7, Salmonella spp. and potential surrogate bacteria on apricot fruit, following exposure to UV-C light[J]. International Journal of Food Microbiology, 2013, 166(3): 356-363.
[29] 李宁, 阎瑞香, 张娜. LED复合光处理对西兰花低温保鲜效果的影响[J]. 华北农学报, 2015, 30(1): 188-193.
[30] ZHAN Li-juan, HU Jin-qian, LIM L T, et al. Light exposure inhibiting tissue browning and improving antioxidant capacity of fresh-cut celery(Apium graveolens var. dulce)[J]. Food Chemistry, 2013, 141(3): 2 473-2 478.
[31] 伍新龄, 张娜, 张晓洁, 等. LED红蓝复合光间歇照射对西兰花贮藏品质的影响[J]. 保鲜与加工, 2015(5): 6-10.
[32] 王晶, 潘勇华, 王旭明, 等. 光敏剂及其临床应用进展[J]. 药学实践杂志, 2002, 20(2): 67-70.
[33] 马金石. 卟啉类第二代光敏剂的发展[J]. 影像科学与光化学, 2002, 20(2): 131-148.
[34] 姜昊文. 新型叶绿素光敏剂—光动力学疗法治疗激素非依赖性前列腺癌[D]. 上海: 复旦大学, 2004: 20-21.
[35] 王小惰, 刘忠义, 余元善, 等. 叶绿素镁钠盐对液态食品中Staphylococcus aureus的光动力杀菌研究[J]. 现代食品科技, 2013, 19(3): 463-466.
[36] LUKSIENE Z, PASKEVICIUTE E. Microbial control of food-related surfaces: Na-Chlorophyllin-based photosensitization[J]. Journal of Photochemistry & Photobiology B Biology, 2011, 105(1): 69-74.
[37] BUCHOVEC I, LUKSEVICITE V, KOKSTAITE R, et al. Inactivation of Gram (-) bacteria Salmonella enterica by chlorophyllin-based photosensitization: Mechanism of action and new strategies to enhance the inactivation efficiency[J]. Journal of Photochemistry & Photobiology B Biology, 2017, 172(5): 1-10.
[38] APONIENE K, LUKSIENE Z. Effective combination of LED-based visible light, photosensitizer and photocatalyst to combat Gram (-) bacteria[J]. J Photochem Photobiol B, 2015, 142(12): 257-263.
[39] HATCHER H, PLANALP R, CHO J, et al. Curcumin: from ancient medicine to current clinical trials[J]. Cellul-ar & Molecular Life Sciences(CMSL), 2008, 65(11): 1 631-1 652.
[40] 沃兴德, 洪行球, 高承贤, 等. 姜黄素长期毒性试验[J]. 浙江中医药大学学报, 2000, 24(1): 61-65.
[41] HAUKVIK T, BRUZELL E S, TONNESEN H H. Photokilling of bacteria by curcumin in different aqueous preparations: Studies on curcumin and curcuminoids XXXVII[J]. Pharmazie, 2009, 64(10): 666-673.
[42] QIAN Ting-ting, WANG Mei, WANG Jiao, et al. Transient spectra study on photo-dynamics of curcumin[J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2016, 166: 38-43.
[43] 许川山, LEUNG A W N. 中药姜黄素的光谱学特性研究[J]. 激光杂志, 2005, 26(4): 86-88.
[44] PENHA C B, BONIN E, SILVA A F D, et al. Photodynamic inactivation of foodborne and food spoilage bacteria by curcumin[J]. LWT-Food Science and Technology, 2017, 76(2): 198-202.
[45] APONIENE K, PASKEVICIUTE E, REKLAITIS I, et al. Reduction of microbial contamination of fruits and vegetables by hypericin-based photosensitization: Comparison with other emerging antimicrobial treatments[J]. Journal of Food Engineering, 2015, 144(1): 29-35.
[46] ERCAN D, COSSU A, NITIN N, et al. Synergistic interaction of ultraviolet light and zinc oxide photosensitizer for enhanced microbial inactivation in simulated wash-water[J]. Innovative Food Science & Emerging Technologies, 2016, 33(9): 240-250.
[47] DE OLIVEIRA E F, COSSU A, TIKEKAR R V, et al. Enhanced antimicrobial activity based on a synergistic combination of sublethal levels of stresses induced by UV-A light and organic acids[J]. Applied & Environmental Microbiology, 2017, 83(11): 317-383.
[48] 邓丽莉, 袁梓洢, 尹保凤, 等. LED光照处理对乙烯褪绿蜜橘果实着色的影响[J]. 食品与机械, 2017, 33(3): 127-133.
[49] GANG Ma, ZHANG Lan-cui, KATO M, et al. Effect of the combination of ethylene and red LED light irradiation on carotenoid accumulation and carotenogenic gene expression in the flavedo of citrus fruit[J]. Postharvest Biology & Technology, 2014, 99(99): 99-104.