Abstract
This review outlined the principle and development of mathematical model based on the theory of heat and mass transfer in porous media. The research emphasis and its progress of mathematical model in the development and application were analyzed from the aspects of evaporation description, parameter determination and definite conditions and so on. Thereafter, an introduction of the advantages and disadvantages of the porous media mathematical model which applied in food thermal processing were given. Moreover, the development prospects of porous media mathematical model applied to fluid-particles food thermal processing were also summarized,which provided a reference for the numerical simulation research of fluid-particles food thermal processing in China.
Publication Date
8-28-2019
First Page
209
Last Page
215
DOI
10.13652/j.issn.1003-5788.2019.08.039
Recommended Citation
Bingyan, YU; Li, DENG; Fen, CHENG; Jia, XU; and Yu, SHI
(2019)
"Review of numerical simulation of fluid-particle food thermal processing based on heat and mass transfer theory of porous media,"
Food and Machinery: Vol. 35:
Iss.
8, Article 39.
DOI: 10.13652/j.issn.1003-5788.2019.08.039
Available at:
https://www.ifoodmm.cn/journal/vol35/iss8/39
References
[1] 邓力. 烹饪过程动力学函数、优化模型及火候定义[J]. 农业工程学报, 2013, 29(4): 278-284.
[2] 余冰妍, 邓力, 李文馨, 等. 猪里脊肉油传热过程中品质变化动力学研究[J]. 食品与机械, 2018, 34(4): 48-53.
[3] GULATI T, DATTA A K. Enabling computer-aided food process engineering: Property estimation equations for transport phenomena-based models[J]. Journal of Food Engineering, 2013, 116(2): 483-504.
[4] HALDER A, DHALL A, DATTA A K. An improved, easily implementable, porous media based model for deep-fat frying Part I: Model development and input parameters[J]. Food & Bioproducts Processing, 2007, 85(3): 209-219.
[5] 刘伟, 范爱武, 黄晓明. 多孔介质热传质理论与应用[M]. 北京: 科学出版社, 2006: 28-55.
[6] NAGHAVI E A, DEHGHANNYA J, GHANBARZADEH B. 3D computational simulation for the prediction of coupled momentum, heat and mass transfer during deep-fat frying of potato strips coated with different concentrations of alginate[J]. Journal of Food Engineering, 2018, 235: 64-78.
[7] MONDAL I H, DASH K K. Textural, color kinetics, and heat and mass transfer modeling during deep fat frying of chhenaJhili[J]. Journal of Food Processing & Preservation, 2016, 41(2): 1-13.
[8] 王美霞, 刘斌, 王超, 等. 微波干燥过程中苹果切片的热质传递分析[J]. 食品研究与开发, 2017, 38(21): 10-14.
[9] ONWUDE D I, HASHIM N, ABDAN K, et al. Modelling of coupled heat and mass transfer for combined infrared and hot-air drying of sweet potato[J]. Journal of Food Engineering, 2018, 228: 12-24.
[10] 邓力. 炒的烹饪过程数值模拟与优化及其技术特征和参数的分析[J]. 农业工程学报, 2013, 29(5): 282-292.
[11] 邓力. 中式烹饪热/质传递过程数学模型的构建[J]. 农业工程学报, 2013, 29(3): 285-292.
[12] 崔俊. 爆炒烹饪的CFD数值模拟及功率测定研究[D]. 贵阳: 贵州大学, 2017: 50-51.
[13] KING C J. Freeze-drying of foods[M]. [S.l.]: CRC Press, 1971: 18-35.
[14] DINCER I, YILDIZ M. Modelling of thermal and moisture diffusions in cylindrically shaped sausages during frying[J]. Journal of Food Engineering, 1996, 28(1): 35-44.
[15] DUTTA S K, NEMA V K, BHARDWAJ R K. Drying behaviour of spherical grains[J]. International Journal of Heat & Mass Transfer, 1988, 31(4): 855-861.
[16] ATEBA P, MITTAL G S. Modelling the deep-fat frying of beef meatballs[J]. International Journal of Food Science & Technology, 1994, 29(4): 429-440.
[17] 朱代根. 食品对流烹饪过程热质传递分析[J]. 科技信息, 2012(16): 38-39.
[18] 尹海蛟, 杨昭, 陈爱强. 果蔬热处理传热过程的数值模拟及验证[J]. 农业工程学报, 2010, 26(11): 344-348.
[19] ZHANG Ji-feng, DATTA A K. Mathematical modeling of bread baking process[J]. Journal of Food Engineering, 2006, 75(1): 78-89.
[20] YAMSAENGSUNG R, RUNGSEE C, PRASERTSIT K. Simulation of the heat and mass transfer processes during the vacuum frying of potato chips[J]. Songklanakarin Journal of Science & Technology, 2008, 30(1): 109-115.
[21] 刘晗. 外部能量源作用下多孔介质相变传热传质耦合计算[D]. 哈尔滨: 哈尔滨工业大学, 2013: 14-17.
[22] 朱杰. 多孔介质内的相变传热传质过程研究[D]. 大连: 大连理工大学, 2006: 8-17.
[23] OUSEGUI A, MORESOLI C, DOSTIE M, et al. Porous multiphase approach for baking process-Explicit formulation of evaporation rate[J]. Journal of Food Engineering, 2010, 100(3): 535-544.
[24] HALDER A, DATTA A K. Surface heat and mass transfer coefficients for multiphase porous media transport models with rapid evaporation[J]. Food & Bioproducts Processing, 2012, 90(3): 475-490.
[25] LI Xiao-long, LLAVE Y, MAO Wei-jie, et al. Heat and mass transfer, shrinkage, and thermal protein denaturation of kuruma prawn (Marsupenaeus japonicas) during water bath treatment: A computational study with experimental validation[J]. Journal of Food Engineering, 2018, 238: 30-43.
[26] 王会林. 可变形多孔介质对流干燥过程热质传递机理研究[D]. 北京: 北京化工大学, 2015: 10-12.
[27] 宋林泉, 陈宝明, 郜凯凯. 基于LBM的多孔骨架热物性对固液相变的影响研究[J]. 山东建筑大学学报, 2017, 32(4): 356-364.
[28] 张金. 多孔介质干燥分子尺度模型及模拟研究[D]. 西安: 陕西科技大学, 2017: 7-21.
[29] LLAVE Y, TAKEMORI K, FUKUOKA M, et al. Mathematical modeling of shrinkage deformation in eggplant undergoing simultaneous heat and mass transfer during convection-oven roasting[J]. Journal of Food Engineering, 2016, 178: 124-136.
[30] RAMACHANDRAN R P, AKBARZADEH M, PALIWAL J, et al. Computational fluid dynamics in drying process modelling: A technical review[J]. Food & Bioprocess Technology, 2018, 11(2): 271-292.
[31] AVERSA M, CURCIO S, CALABRO V, et al. An analysis of the transport phenomena occurring during food drying process[J]. Journal of Food Engineering, 2007, 78(3): 922-932.
[32] BAIK O D, MITTAL G S. Heat and moisture transfer and shrinkage simulation of deep-fat tofu frying[J]. Food Research International, 2005, 38(2): 183-191.
[33] HALDER A, DHALL A, DATTA A K. Modeling transport in porous media with phase change: Applications to food processing[J]. Journal of Heat Transfer, 2011, 133(3): 1-13.
[34] HALDER A, DHALL A, DATTA A K. An improved, easily implementable, porous media based model for deep-fat frying Part II: Results, validation and sensitivity analysis[J]. Food & Bioproducts Processing, 2007, 85(3): 209-219.
[35] KHAN M I H, JOARDDER M U H, KUMAR C, et al. Multiphase porous media modelling: A novel approach to predicting food processing performance[J]. Critical Reviews in Food Science and Nutrition, 2017, 58(4): 528-549.
[36] ZHANG Zhi-jun, KONG N. Nonequilibrium thermal dynamic modeling of porous medium vacuum drying process[J]. Mathematical Problems in Engineering, 2012(6): 2 301-2 314.
[37] WARNING A D, ARQUIZA J M R, DATTA A K. A multiphase porous medium transport model with distributed sublimation front to simulate vacuum freeze drying[J]. Food & Bioproducts Processing, 2015, 94: 637-648.
[38] SANDHU J, PARIKH A, TAKHAR P S. Experimental determination of convective heat transfer coefficient during controlled frying of potato discs[J]. LWT-Food Science and Technology, 2016, 65: 180-184.
[39] ALVIS A, VELEZ C, RADA-MENDOZA M, et al. Heat transfer coefficient during deep-fat frying[J]. Food Control, 2009, 20(4): 321-325.
[40] SOSAMORALES M E, ORZUNAESPIRITU R, VELEZRUIZ J F. Mass, thermal and quality aspects of deep-fat frying of pork meat[J]. Journal of Food Engineering, 2006, 77(3): 731-738.
[41] KIM D N, MIN B, LEE S H, et al. Influence of surface coating with xanthan gum on heat transfer during deep-fat frying of potato strips[J]. Journal of Food Process Engineering, 2011, 35(6): 898-904.
[42] AHROMRIT A, NEMA P K. Heat and mass transfer in deep-frying of pumpkin, sweet potato and taro[J]. Journal of Food Science & Technology, 2010, 47(6): 632-637.
[43] SAKIN-YILMAZER M, KAYMAK-ERTEKIN F, ILICALI C. Modeling of simultaneous heat and mass transfer during convective oven ring cake baking[J]. Journal of Food Engineering, 2012, 111(2): 289-298.
[44] SAFARI A, SALAMAT R, BAIK O D. A review on heat and mass transfer coefficients during deep-fat frying: Determination methods and influencing factors[J]. Journal of Food Engineering, 2018, 230: 114-123.
[45] FERUH E, PETR D. Determination of heat transfer coefficient during high pressure frying of potatoes[J]. Journal of Food Engineering, 2010, 96(4): 528-532.
[46] YAGUA C V, MOREIRA R G. Physical and thermal properties of potato chips during vacuum frying[J]. Journal of Food Engineering, 2011, 104(2): 272-283.
[47] 杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006: 123-125.
[48] AHROMRIT A, NEMA P K. Heat and mass transfer in deep-frying of pumpkin, sweet potato and taro[J]. Journal of Food Science & Technology, 2010, 47(6): 632-637.
[49] MOSAVIAN M T H, KARIZAKIV M. Determination of mass transfer parameters during deep fat frying of rice crackers[J]. Rice Science, 2012, 19(1): 64-69.
[50] ERIMKOSE Y, DOGAN I S. Determination of simultaneous heat and mass transfer parameters of tulumba dessert during deep-fat frying[J]. Journal of Food Processing and Preservation, 2016, 41(4): 1-8.
[51] NICOLAS V, SALAGNAC P, GLOUANNEC P, et al. Modelling heat and mass transfer in deformable porous media: Application to bread baking[J]. Journal of Food Engineering, 2014, 130(3): 23-35.
[52] RABELER F, FEYISSA A H. Modelling the transport phenomena and texture changes of chicken breast meat during the roasting in a convective oven[J]. Journal of Food Engineering, 2018, 237: 60-68.
[53] FABBRI A, CEVOLI C, ALESSANDRINI L, et al. Numerical modeling of heat and mass transfer during coffee roasting process[J]. Journal of Food Engineering, 2011, 105(2): 264-269.
[54] BIALOBRZEWSKI I. Determination of the mass transfer coefficient during hot-air-drying of celery root[J]. Journal of Food Engineering, 2007, 78(4): 1 388-1 396.
[55] DATTA A K. Hydraulic permeability of food tissues[J]. International Journal of Food Properties, 2006, 9(4): 767-780.
[56] OROSZVARI B K, ROCHA C S, SJOHOLM I, et al. Permeability and mass transfer as a function of the cooking temperature during the frying of beefburgers[J]. Journal of Food Engineering, 2006, 74(1): 1-12.
[57] FENG Hao, TANG Ju-ming, PLUMB O A, et al. Intrinsic and relative permeability for flow of humid air in unsaturated apple tissues[J]. Journal of Food Engineering, 2004, 62(2): 185-192.
[58] GOEDEKEN D L, TONG C H. Permeability measurements of porous food materials[J]. Journal of Food Science, 2010, 58(6): 1 329-1 333.
[59] SEYEDABADI E, KHOJASTEHPOUR M, ABBASPOURFARD M H. Convective drying simulation of banana slabs considering non-isotropic shrinkage using FEM with the Arbitrary Lagrangian-Eulerian method[J]. International Journal of Food Properties, 2017, 20(S1): 36-49.
[60] 刘显茜. 生物多孔材料非稳态收缩及其对传热传质影响研究[D]. 昆明: 昆明理工大学, 2010: 21-49.
[61] DHALSAMANT K, TRIPATHY P P, SHRIVASTAVA S L. Moisture transfer modeling during solar drying of potato cylinders considering shrinkage[J]. International Journal of Green Energy, 2017, 14(2): 184-195.
[62] 王会林, 卢涛, 姜培学. 生物多孔介质热风干燥数学模型及数值模拟[J]. 农业工程学报, 2014, 30(20): 325-333.
[63] AJANI C, KUMAR A, CURCIO S, et al. Parametric study and shrinkage modelling of natural rubber sheet drying using COMSOL multiphysics[J]. Materials Science and Engineering, 2017, 243(1): 1-8.