Abstract
In this paper, the food quick-freezing technology, the shape of ice crystal at different freezing rates and methods for observing ice crystals are described. The research progress of pressure-assisted freezing, electrostatic-assisted freezing and magnetic-assisted freezing in recent years is reviewed. The direct method can directly observe the ice crystal formed during the freezing process. The indirect method analyzes the ice crystal characteristics by observing the gap left by the ice crystal in the food after freezing. Pressure-assisted freezing can improve the super-cooling degree. When the pressure is released, the ice crystals formed by instantaneous freezing are fine and evenly distributed. Electrostatic-assisted freezing reduces the nucleation temperature and promotes the formation of smaller ice crystals. Magnetic-assisted freezing can enhance the hydrogen bond and inhibit the formation of ice crystals. These assisted freezing methods are beneficial to improve the quality of frozen food and have good application prospects.
Publication Date
8-28-2019
First Page
220
Last Page
225
DOI
10.13652/j.issn.1003-5788.2019.08.041
Recommended Citation
Cong, CHEN; Dazhang, YANG; and Jing, XIE
(2019)
"Review on ice crystal shape and assisted freezing methods of quick-frozen food,"
Food and Machinery: Vol. 35:
Iss.
8, Article 41.
DOI: 10.13652/j.issn.1003-5788.2019.08.041
Available at:
https://www.ifoodmm.cn/journal/vol35/iss8/41
References
[1] BIGLIA A, COMBA L, FABRIZIO E, et al. Case studies in food freezing at very low temperature[J]. Energy Procedia, 2016, 101: 305-312.
[2] PSSA T. Nutritional and toxicological aspects of the chemical changes of food components and nutrients during freezing[C]// CHEUNG P, MEHTA B. Handbook of Food Chemistry. Tartu: Springer Berlin Heidelberg, 2015: 867-896.
[3] 唐君言, 邵双全, 徐洪波, 等. 食品速冻方法与模拟技术研究进展[J]. 制冷学报, 2018, 39(6): 1-9.
[4] KAALE L D, EIKEVIK T M. The development of ice crystals in food products during the superchilling process and following storage, a review[J]. Trends in Food Science & Technology, 2014, 39(2): 91-103.
[5] MAGNUSSEN O M, HAUGLAND A, HEMMINGSEN A K T, et al. Advances in superchilling of food: Process characteristics and product quality[J]. Trends in Food Science & Technology, 2008, 19(8): 418-424.
[6] 蔡青文, 谢晶. 微冻保鲜技术研究进展[J]. 食品与机械, 2013, 29(6): 248-252.
[7] 舒志涛, 谢晶, 杨大章. 喷嘴结构对冲击式速冻设备性能优化研究进展[J]. 食品与机械, 2018, 34(6): 187-191.
[8] 孙向阳, 侯丽芬, 隋继学, 等. 我国速冻食品产业发展现状及趋势[J]. 农业机械, 2012(21): 69-72.
[9] 林锦泰. 第7章制冷设备市场分析[J]. 制冷技术, 2018, 38(S1): 56-69.
[10] 隋继学, 张一鸣. 速冻食品工艺学[M]. 北京: 化学工业出版社, 2015: 7-13.
[11] 谢晶. 食品冷冻冷藏原理与技术[M]. 北京: 中国农业出版社, 2015: 160-167.
[12] 张国治, 田少君, 李果. 速冻及冻干食品加工技术[M]. 北京: 化学工业出版社, 2008: 6-17.
[13] KONO S, KON M, ARAKI T, et al. Effects of relationships among freezing rate, ice crystal size and color on surface color of frozen salmon fillet[J]. Journal of Food Engineering, 2017, 214: 158-165.
[14] 赵金红, 胡锐, 刘冰, 等. 几种冷冻新技术对食品冻结过程中冰晶形成的影响[J]. 食品与机械, 2012, 28(6): 241-245.
[15] 栾兰兰. 冷冻带鱼冰晶生长预测模型及分形维数品质评价体系的建立[D]. 杭州: 浙江大学, 2018: 21-36.
[16] NINAGAWA T, EGUCHI A, KAWAMURA Y, et al. A study on ice crystal formation behavior at intracellular freezing of plant cells using a high-speed camera[J]. Cryobiology, 2016, 73(1): 20-29.
[17] FUJIKAWA S, ENDOH K. Cryo-scanning electron microscopy to study the freezing behavior of plant tissues[J]. Methods in Molecular Biology, 2009, 59(2): 214-222.
[18] KOBAYASHI R, KIMIZUKA N, WATANABE M, et al. The effect of supercooling on ice structure in tuna meat observed byusing X-ray computed tomography[J]. Interna-tional Journal of Refrigeration, 2015, 60: 270-277.
[19] KAALE L D, EIKEVIK T M. The influence of superchil-ling storage methods on the location/distribution of ice crystals during storage of Atlantic salmon (Salmosalar)[J]. Food Control, 2015, 52: 19-26.
[20] KAALE L D, EIKEVIK T M, RUSTAD T, et al. Ice crystal development in pre-rigor Atlantic salmon fillets during superchilling process and following storage[J]. Food Control, 2013, 31(2): 491-498.
[21] LUAN Lan-lan, WANG Li-ping, WU Tian-tian, et al. A study of ice crystal development in hairtail samples during different freezing processes by cryosectioning versus cryosubstitution method[J]. International Journal of Refrigeration, 2018, 87: 39-46.
[22] MANO N, WADA N, KAWAMOTO T, et al. A novel application of a cryosectioning technique to undecalcified coral specimens[J]. Marine Biology, 2016, 163(5): 1-9.
[23] 江英. 食品的高压低温处理实验研究[D]. 大连: 大连理工大学, 2008: 7-8.
[24] TAYLOR A C. The physical state transition in the freezing of living cells[J]. Annals of the New York Academy of Sciences, 2010, 85(2): 595-609.
[25] LEBAIL A, CHEVALIER D, MUSSA D M, et al. High pressure freezing and thawing of foods: A review[J]. International Journal of Refrigeration, 2002, 25(5): 504-513.
[26] 李志义, 夏远景, 刘学武, 等. 高压冷冻食品的机理及应用[J]. 食品研究与开发, 2006(5): 145-148.
[27] 戎云锁. 动植物组织高压低温保存实验研究[D]. 大连: 大连理工大学, 2015.
[28] FERNNDEZ P P, OTERO L, GUIGNON B, et al. High-pressure shift freezing versus high-pressure assisted freezing: Effects on the microstructure of a food model[J]. Food Hydrocolloids, 2006, 20(4): 510-522.
[29] 陈淑花. 食品高压低温处理过程基础研究[D]. 大连: 大连理工大学, 2013: 29-57.
[30] SU Guang-ming, RAMASWAMY H S, ZHU Song-ming, et al. Thermal characterization and ice crystal analysis in pressure shift freezing of different muscle (shrimp and porcine liver) versus conventional freezing method[J]. Innovative Food Science & Emerging Technologies, 2014, 26: 40-50.
[31] HONG G P, CHOI M J. Comparison of the quality characteristics of abalone processed by high-pressure sub-zero temperature and pressure-shift freezing[J]. Innovative Food Science & Emerging Technologies, 2016(33): 19-25.
[32] CHOI M J. Effects of pressure-shift freezing conditions on the quality characteristics and histological changes of pork[J]. LWT-Food Science and Technology, 2016, 67(5): 194-199.
[33] CHENG Lina, SUN Da-wen, ZHU Zhi-wei, et al. Effects of high pressure freezing (HPF) on denaturation of natural actomyosin extracted from prawn (Metapenaeus ensis)[J]. Food Chemistry, 2017, 229: 252-259.
[34] SMITH N A S, BURLAKOV V M, RAMOS M. Mathematical modeling of the growth and coarsening of ice particles in the context of high pressure shift freezing processes[J]. The Journal of Physical Chemistry B, 2013, 117(29): 8 887-8 895.
[35] SU Wei, XU Xiao-bin, ZHANG Hong, et al. Effects of dipole polarization of water molecules on ice formation under an electrostatic field[J]. Cryobiology, 2008, 56(1): 93-99.
[36] ORLOWSKA M, HAVET M, LE-BAIL A. Controlled ice nucleation under high voltage DC electrostatic field condi-tions[J]. Food Research International, 2009, 42(7): 879-884.
[37] SAIDEHF J, NASSER H, EZAT K, et al. Evaluation of the static electric field effects on freezing parameters of some food systems[J]. International Journal of Refrigeration, 2019(99): 30-36.
[38] MOK J H, CHOI W, PARK S H, et al. Emerging pulsed electric field (PEF) and static magnetic field (SMF) combination technology for food freezing[J]. International Journal of Refrigeration, 2015, 50: 137-145.
[39] DALVI-ISFAHAN M, HAMDAMI N, LE-BAIL A. Effect of freezing under electrostatic field on the quality of lamb meat[J]. Innovative Food Science & Emerging Technolo-gies, 2016(37): 68-73.
[40] JIA Guo-liang, HE Xiang-li, NIRASAWA S, et al. Effects of high-voltage electrostatic field on the freezing behavior and quality of pork tenderloin[J]. Journal of Food Engineering, 2017, 204: 18-26.
[41] DALVI-ISFAHAN M, HAMDAMI N, LE-BAIL A. Effect of freezing under electrostatic field on selected properties of an agar gel[J]. Innovative Food Science & Emerging Technologies, 2017, 42: 151-156.
[42] 高文宏, 陈秋妍, 王启军, 等. 静电场对葡萄糖溶液和蔗糖溶液冰晶生长的影响[J]. 现代食品科技, 2017, 33(10): 21-29.
[43] 李侠, 钱书意, 杨方威, 等. 低压静电场下不同隔距冻结—解冻对牛肉品质的影响[J]. 农业工程学报, 2017(8): 286-293.
[44] 尚柯, 杨方威, 李侠, 等. 静电场辅助冻结—解冻对肌肉保水性及蛋白理化特性的影响[J]. 食品科学, 2018, 39(3): 157-162.
[45] CAI Ran, YANG Hong-wei, HE Jin-song, et al. The effects of magnetic fields on water molecular hydrogen bonds[J]. Journal of Molecular Structure, 2009, 938(1/2/3): 15-19.
[46] 单亮亮, 刘斌. 电磁场对水及其盐溶液的冻结影响[J]. 制冷, 2017, 36(1): 29-35.
[47] 王鹏飞. 电磁场对细胞冻结特性的影响[D]. 天津: 天津商业大学, 2015: 50-68.
[48] 展曦鸣. 极低频电磁场对两种液体体系冷冻过程的影响[D]. 广州: 华南理工大学, 2018: 22-29.
[49] JAMES C, REITZ B, JAMES S J. The freezing characteristics of garlic bulbs (Allium sativum L.) frozen conventionally or with the assistance of an oscillating weak magnetic field[J]. Food and Bioprocess Technology, 2015, 8(3):702-708.
[50] OTERO L, PREZ-MATEOS M, RODRGUEZ A, et al. Electromagnetic freezing: Effects of weak oscillating magnetic fields on crab sticks[J]. Journal of Food Engineering, 2017, 200: 87-94.
[51] ZHAO Hong-xia, HU Han-qing, LIU Sheng, et al. Experimental study on freezing of liquids under static magnetic field[J]. Chinese Journal of Chemical Engineering, 2017, 25(9): 1 288-1 293.
[52] 王亚会, 邸倩倩, 刘斌, 等. 直流磁场辅助冻结对西兰花品质的影响[J]. 食品研究与开发, 2017, 38(21): 195-199.
[53] 顾思忠, 刘斌, 宋健飞, 等. 直流磁场对豌豆冻结特性的影响[J]. 冷藏技术, 2017, 40(4): 23-26.
[54] 龙超, 吴子健, 宋健飞. 磁场辅助冻结对马铃薯块冻结及贮藏特性影响[J]. 食品工业科技, 2018, 39(16): 272-274, 305.
[55] ZHAN Xi-ming, ZHU Zhi-wei, SUN Da-wen. Effects of extremely low frequency electromagnetic field on the freezing processes of two liquid systems[J]. LWF Food Science and Technology, 2019, 103: 212-221.