•  
  •  
 

Abstract

Enterobacteriaceae, Brochothrix thermosphacta, and total viable counts (TVC) are the important parameters that affect the shelf life of chilled chicken. Discovering the correlation between the parameters and the accuracy of the shelf-life prediction is conducive to monitoring the storage of chilled chicken. To develop microbial prediction system for shelf life of chilled chicken, the bacterial counts were calculated to establish the growth model of these parameters using SGompertz model. Meanwhile, the Pearson correlation coefficient analysis was performed for the parameters and the accuracy of the shelf-life prediction. Then the prediction system was written by Visual Basic (VB) and verified with actual samples. Results showed that the spoilage thresholds of Enterobacteriaceae, B. thermosphacta, and TVC were 4.433, 2.735, and 5.141 lg(CFU/g), respectively. The R2 in both SGompertz function and Square Root model were greater than 0.94. The Pearson’s coefficients of the parameters were 0.992 3 (P<0.01), 0.992 7 (P<0.01), and 0.995 1 (P<0.01), respectively. These findings suggested that the parameters were all related to the spoilage of chilled chicken, and the TVC had the highest correlation. The maximum relative error of the prediction system written in VB language for chilled chicken was less than 9%. It’s provided to be an efficient and convenient method for formulating the shelf life of chilled chicken.

Publication Date

2-18-2023

First Page

110

Last Page

115

DOI

10.13652/j.issn.1003-5788.2020.10.022

References

[1] 刘雪,刘娇,周鹏,等.冰鲜鸡肉品质及其货架期的研究进展与展望[J].现代食品科技,2017,33(3):328-340.
[2] 沈勇,梅俊,谢晶.预测微生物学在水产品货架期中应用研究进展[J].食品与机械,2019,35(1):221-225.
[3] 李苗云,张建威,樊静,等.生鲜鸡肉货架期预测模型的建立与评价[J].食品科学,2012,33(23):73-76.
[4] 刘超群,陈艳丽,王宏勋,等.冷鲜猪肉中热杀索丝菌生长预测模型的建立与验证[J].食品科学,2010,31(18):86-89.
[5] 郑梦林,刘明芹,王宏勋,等.不同保鲜方式对冷鲜鸭肉中肠杆菌生长影响评价[J].食品工业,2015,36(8):115-118.
[6] 梁慧,于立梅,陈秀兰,等.鸡胸肉冷藏过程中腐败菌分析及其品质变化研究[J].食品与发酵工业,2016,42(10):184-188.
[7] YE Xu-jun,IINO K,ZHANG Shu-huai.Monitoring of bacterial contamination on chicken meat surface using a novel narrowband spectral index derived from hyperspectral imagery data[J].Meat Science,2016,122:25-31.
[8] 高继业,李继祥,黄伟.鲜猪肉在保藏中的主要腐败菌分析[J].食品科学,2015,36(22):173-176.
[9] LYTOU A E,NYCHAS G J E,PANAGOU E Z.Effect of pomegranate based marinades on the microbiological,chemical and sensory quality of chicken meat:A metabolomics approach[J].International Journal of Food Microbiology,2018,267:42-53.
[10] 梁慧,于立梅,陈秀兰,等.鸡胸肉冷藏过程中腐败菌分析及其品质变化研究[J].食品与发酵工业,2016,42(10):184-188.
[11] PATANGE A,BOEHM D,BUENO-FERRER C,et al.Controlling Brochothrix thermosphacta as a spoilage risk using in-package atmospheric cold plasma[J].Food Microbiology,2017,66:48-54.
[12] 董飒爽,李传令,赵改名,等.工厂实测冷却分割鸡胸肉生产过程中菌落总数的变化及货架期预测模型的建立[J].现代食品科技,2016,32(8):183-190.
[13] 陈鹏,程镜蓉,陈之瑶,等.黄羽肉鸡冷鲜储存过程中品质变化研究[J].现代食品科技,2016,32(3):140-146.
[14] 李忠辉,姚开,贾冬英,等.冷鲜鸡胸肉主要腐败菌的分离及低温贮藏对货架期的影响[J].食品与发酵工业,2011,37(1):167-170.
[15] 杨欢,刘毅,邵乐乐,等.真空包装狮子头货架期预测模型的建立[J].食品工业科技,2019,40(19):266-272.
[16] 赵筱彤,周国燕.食品微生物竞争生长模型的研究进展[J].食品与发酵科技,2017,53(6):90-95.
[17] 周康,刘寿春,李平兰,等.食品微生物生长预测模型研究新进展[J].微生物学通报,2008,35(4):589-594.
[18] ZWIETERING M H.Modeling of the bacterial growth curve[J].Applied and Environmental Microbiology,1990,56(6):1 875-1 881.
[19] RATKOWSKY D A,LOWRY R K,MCMEEKIN T A,et al.Model for bacterial culture growth rate throughout the entire biokinetic temperature range[J].Journal of Bacteriology,1983,154(3):1 222-1 226.
[20] LU K H,SHEEN Y J,HUANG T P,et al.Effect of temperature on the growth of Staphylococcus aureus in ready-to-eat cooked rice with pork floss[J].Food Microbiology,2019,89:103374.
[21] 张玉华,孟一.冷却肉特定腐败菌群体感应的研究进展[J].肉类研究,2019,33(4):66-70.
[22] 高灿灿,刘佳玫,陆兆新,等.鲜切小白菜和生菜不同贮藏温度下货架期预测模型的建立[J].食品工业科技,2016,37(19):334-338.
[23] LI Chang-cheng,HUANG Li-han,HWANG C A.Effect of temperature and salt on thermal inactivation of Listeria monocytogenes in salmon roe[J].Food Control,2017,73:406-410.
[24] LI Miao-yun,HUANG Li-han,YUAN Qian-qian.Growth and survival of Salmonella Paratyphi A in roasted marinated chicken during refrigerated storage:Effect of temperature abuse and computer simulation for cold chain management[J].Food Control,2017,74:17-24.
[25] ROSS T.Indices for performance evaluation of predictive models in food microbiology[J].Journal of Applied Bacteriology,1996,81(5):501-508.
[26] BRAUN P,SUTHERLAND J P.Predictive modelling of growth and enzyme production and activity by a cocktail of Pseudomonas spp.,Shewanella putrefaciens and Acinetobacter sp.[J].International Journal of Food Microbiology,2003,86(3):271-282.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.