Abstract
Taking the loosening and conditioning process, feeding moisture returning process, hot air moistening process and the whole silk making process as the research objects, the artificial neural network and multiple regression modeling method were used to investigate the influence of different modeling methods on the moisture prediction accuracy of each process. moreover, the predicted results were tested experimentally. The experimental results showed that the mean of the absolute value of the prediction error was 0.24% for the loose moisture returning process with multiple regression modeling method. The mean of the absolute value of the prediction error was 0.20% for feeding moisture returning process with artificial neural network method. The mean of the absolute value of the prediction error was 0.10% for hot air moistening process with artificial neural network method. The mean of the absolute value of the prediction error was 0.05% for all the silk making process with artificial neural network method. The model computing system was developed based on C# language, with the use of SQLSERVER database for data storage. The developed model operation system had strong ability of data analysis and production prediction, which could be used to predict the moisture content of each key process in cigarette silk making process.
Publication Date
2-18-2023
First Page
190
Last Page
195,205
DOI
10.13652/j.issn.1003-5788.2020.10.036
Recommended Citation
LI, Zi-juan; LIU, Bo; GAO, Yang; and CHEN, Jiao-jiao
(2023)
"Establishment and detection of moisture prediction model of key processes of cigarette cutting process,"
Food and Machinery: Vol. 36:
Iss.
10, Article 36.
DOI: 10.13652/j.issn.1003-5788.2020.10.036
Available at:
https://www.ifoodmm.cn/journal/vol36/iss10/36
References
[1] 普绍清,高长江.优化烟草制丝设备提高烟丝质量[J].山东工业技术,2018(13):39.
[2] 赵曰利.制丝工艺加工控制要素分析[J].企业科技与发展,2014(5):31-32,45.
[3] 胡宇航,何毅,李凡,等.烘丝过程出口水分控制数据分析方法应用研究[J].电脑与信息技术,2016(4):13-15.
[4] 王小飞,彭晓燕,杨玉波,等.基于RBF-ARX模型的烘丝机出口含水率优化控制方法[J].烟草科技,2014(1):26-30.
[5] 曹阳.基于BP神经网络的烘丝控制模型的研究与应用[D].长沙:湖南大学,2016:20-23.
[6] 刘泽,何邦华,陈林,等.基于料液施加效果的加料工序关键工艺参数优化[J].烟草科技,2015,48(4):71-75.
[7] 张辉.大数据技术在烘丝出口水分预测与控制中的应用[J].通讯世界,2017(6):249-250.
[8] 王艳,陈静,王志山,等.基于模糊神经网络PID控制的粉体包装计量控制系统[J].食品与机械,2020,36(1):136-139.
[9] 杨正伟,张鑫,李庆盛,等.基于电子舌及一维深度CNN-ELM模型的普洱茶贮藏年限快速检测[J].食品与机械,2020,36(7):45-52.
[10] 钟文焱,陈晓杜,马庆文,等.基于多因素分析的烘丝机入口含水率预测模型的建立与应用[J].烟草科技,2015,48(5):67-73.
[11] 刘炳军,李江,邱琳,等.制丝烘丝工序关键工艺参数批间稳定性控制分析[J].大众科技,2017,19(12):16-19.
[12] 董高峰,殷沛沛,和智君,等.微波膨胀梗制丝关键工艺参数的优化[J].中国农学通报,2014,30(30):302-309.
[13] 王宏铝,王筑临,许小双,等.基于在线烟碱预测模型的烟叶复烤均质化加工[J].烟草科技,2015,48(6):79-83.
[14] 何晓群.多元统计分析[M].北京:中国人民大学出版社,2012:143-154.
[15] 李洪成,姜宏华.SPSS 数据分析教程[M].北京:人民邮电出版社,2012:24-27.