Abstract
We proposed a method of defect detection for jujube based on a neural network with network-in-network convolutional (NIN-CNN). This method adds 1×1 hidden perception layer to the original AlexNet convolution neural network; enhances the non-linearity of the network to extract more abstract features; and replaces the fully connected layer with the global average pooling layer, which improves the recognition accuracy while reducing a large number of parameters. In this study, Jun jujube in Xinjiang is tested. The jujube is divided into seven categories, including healthy jujube, black-spotted, wrinkled, overlapping, peeling, yellow-skinned and crack. The experimental results show that the classification effect of the proposed method is improved effectively, compared with the conventional visual detection method with SVM and the classification method with AlexNet network.
Publication Date
2-28-2020
First Page
140
Last Page
145,181
DOI
10.13652/j.issn.1003-5788.2020.02.026
Recommended Citation
Zhi-rui, YANG; Hong, ZHENG; Zhong-yuan, GUO; and Xiao-hang, XU
(2020)
"Detection of jujube defects based on the neural network with network convolution,"
Food and Machinery: Vol. 36:
Iss.
2, Article 26.
DOI: 10.13652/j.issn.1003-5788.2020.02.026
Available at:
https://www.ifoodmm.cn/journal/vol36/iss2/26
References
[1] 亓树艳,王荔,莫晓燕.大枣多糖的提取工艺及抗氧化作用研究[J].食品与机械,2012,28(4):117-120.
[2] 毛永民,宋仁平,申连英,等.GB/T 22345—2008鲜枣质量等级[S].北京:中国标准出版社,2006:1-6.
[3] 钟小华,曹玉华,张永清,等.基于机器视觉技术的红枣全表面信息无损分拣系统研究与实现[J].食品与机械,2017,33(5):114-118.
[4] 詹映.基于机器视觉南疆红枣颜色分级方法研究[D].阿拉尔:塔里木大学,2015:21-26.
[5] 张萌,许敏.红枣表面缺陷快速检测方法研究[J].江苏农业科学,2015,43(7):331-334.
[6] KRIZHEVSKY A,SUTSKEVER I,HINTON G.Image net classification with deep convolutional neural networks[J].Advances in Neural Information Processing Systems,2012,25(50):6 608-6 615.
[7] MOHANTY S P,HUGHES D P,SALATHE MARCEL.Using deep learning for image-based plant disease detection[J].Frontiers in Plant Science,2016,7(3):1 419.
[8] WANG Guang,SAN Yu,WANG Jian-xin.Automatic image-based plant disease severity estimation using deep learning[J].Computational Intelligence and Neuroscience,2017,2 017:1-8.
[9] JOHANNES A,PICON A,ALVAREZ-GILA A,et al.Automatic plant disease diagnosis using mobile capture devices,applied on a wheat use case[J].Computers and Electronics in Agriculture,2017,138(12):200-209.
[10] FERENTINOS K P.Deep learn models for plant disease detection and diagnosis[J].Computers and Electronics in Agriculture,2018,145(20):311-318.
[11] RANGARAJAN A K,PURVSHOTHAMAN R,RAMESH A.Tomato crop disease classification using pre-trained deep learning algorithm[J].Procedia Computer Science,2018,133:1 040-1 047.
[12] LI Fei,LI Zhi-tang.An improved interconnection network based on NIN[J].Wuhan University Journal of Natural Sciences,2004(3):303-308.
[13] 钟克洪,丁明跃,周成平,等.基于均匀空间的颜色分级方法[J].中国图象图形学报,2004(11):7-13,127.
[14] 李江波,饶秀勤,应义斌.水果表面亮度不均校正及单阈值缺陷提取研究[J].农业机械学报,2011,42(8):159-163.
[15] 庞江伟,应义斌.机器视觉在水果缺陷检测中的研究现状[J].农机化研究,2006(9):47-49.
[16] 邵帅.一种基于三支决策SVM分类的图像识别方法[J].现代计算机,2019(18):64-69.
[17] 王春普,文怀兴,王俊杰.基于机器视觉的大枣表面缺陷检测[J].食品与机械,2019,35(7):168-171.