•  
  •  
 

Abstract

The free radical scavenging ability, metal ion chelation ability and reducing ability of different concentrations of placenta peptide from Tibetan sheep were determined, and the distribution of relative molecular weight, amino acid composition and structural characterization were also investigated to explain the causes of antioxidant capacity. The results showed that the antioxidant capacity of sheep placenta peptide was positively correlated with its concentration, and it had strong radical scavenging ability for DPPH· and ·OH with IC50 of 2.83 mg/mL and 0.94 mg/mL, respectively, which were comparable to BHT. In addition, the placenta peptide from Tibetan sheep also had certain O ·scavenging ability, metal ion chelating ability for Fe2+ and reduction ability for Fe3+and Cu2+. Moreover, the placenta peptide below 1 000 Da of molecular weight accounted for nearly 90% in total peptide, which contained an abundance of aspartic acid, glutamic acid, glycine and so on. Structural characterization results showed that the placenta peptide still remained the proper functional group structures of protein in sheep placental, the micromorphology of dense spherical granular happened, and the rearranged protein molecules aggregated during degradation of proteins to peptide. Based on the results of circular dichroism, the decreased content of α-helices, increased content of β-sheets and random curl were observed. In a word, the placental peptide from the Tibetan sheep have nice antioxidant capacity due to its appropriate content of oligopeptides and amino acids profile, special micromorphology properties and space structure.

Publication Date

4-28-2020

First Page

162

Last Page

169

DOI

10.13652/j.issn.1003-5788.2020.04.030

References

[1] CAI Lu-yun,WU Xiao-sa,ZHANG Yu-hao,et al.Purification and characterization of three antioxidant peptides from protein hydrolysate of grass carp(Ctenopharyngodon idella)skin[J].Journal of Functional Foods,2015,16:234-242.
[2] 郑召君,武如娟,张日俊.动物源性抗氧化肽的生物学功能及与其结构的关系[J].动物营养学报,2015,27(4):1 034-1 040.
[3] 王善辉,葛利江.山羊胎盘肽对幼犬免疫功能和抗氧化功能的影响[J].西南农业学报,2007,20(1):123-127.
[4] 姜惠敏,李明,曹光群,等.酶解制备羊胎盘抗氧化肽工艺条件的优化[J].食品与生物技术学报,2017,36(1):99-104.
[5] 张丙云,王聪,谢言言,等.超声波辅助复合酶法制备藏系绵羊胎盘肽的工艺优化[J].食品工业科技,2017,38(21):130-136.
[6] 邵佩,庄虎,蹇顺华,等.罗汉果黄酮的提取、纯化及生物活性研究进展[J].食品与机械,2019,35(12):221-225.
[7] 任海伟,石菊芬,蔡亚玲,等.响应面法优化超声辅助酶解制备藏系羊胎盘肽工艺及抗氧化能力分析[J].食品科学,2019,40(24):265-273.
[8] XING Lu-juan,HU Ya-ya,HU Hong-yan,et al.Purification and identification of antioxidative peptides from dry-cured Xuanwei ham[J].Food Chemistry,2016,194:951-958.
[9] NAJAFIAN L,BABJIA S.Isolation,purification and identification of three novel antioxidative peptides from patin(Pangasius sutchi)myofibrillar protein hydrolysates[J].LWT-Food Science and Technology,2015,60(1):452-461.
[10] ZHANG Fang,QU Jie,THAKUR K,et al.Purification and identification of an antioxidative peptide from peony(Paeonia suffruticosa Andr.)seed dreg[J].Food Chemistry,2019,285:266-274.
[11] WU Hai-tao,JIN Wen-gang,SUN Shi-Guang,et al.Identification of antioxidant peptides from protein hydrolysates of scallop(Patinopecten yessoensis)female gonads[J].European Food Research and Technology,2015,242(5):713-722.
[12] GIMÉNEZ B,ALEMÁN,MONTERO P,et al.Antioxidant and functional properties of gelatin hydrolysates obtained from skin of sole and squid[J].Food Chemistry,2009,114(3):976-983.
[13] 涂宗财,唐平平,郑婷婷,等.响应面优化鱼鳔胶原肽制备工艺及其抗氧化活性研究[J].食品与发酵工业,2017,43(5):160-166.
[14] 何小庆,曹文红,章超桦,等.波纹巴非蛤蛋白酶解产物的抗氧活性及分子量分布研究[J].现代食品科技,2014,30(1):74-80.
[15] 文飞,母应春,李静雯,等.羊肝蛋白酶解条件优化及酶解产物抗氧化活性研究[J].中国酿造,2017,36(1):157-163.
[16] ZHOU Da-yong,TANG Yue,ZHU Bei-wei,et al.Antioxidant activity of hydrolysates obtained from scallop(Patinopecten yessoensis)and abalone(Haliotis discus hannai Ino)muscle[J].Food Chemistry,2012,132(2):815-822.
[17] 谢孟峡,刘媛.红外光谱酰胺Ш带用于蛋白质二级结构的测定研究[J].高等学校化学学报,2003,24(2):226-231.
[18] 温慧芳,陈丽丽,白春清,等.基于不同提取方法的鮰鱼皮胶原蛋白理化性质的比较研究[J].食品科学,2016,37(1):74-81.
[19] 刘丽莉,王焕,李丹,等.鸡蛋清卵白蛋白酶解工艺优化及其结构性质[J].食品科学,2016,37(10):54-61.
[20] 齐希光,陆晓婷,张晖,等.不同分子量黑籽瓜种子多肽抗氧化能力的研究[J].食品工业科技,2016,37(9):74-80.
[21] 李铉军,崔胜云.抗坏血酸清除DPPH自由基的作用机理[J].食品科学,2011,32(1):86-90.
[22] 周洁静,侯银臣,刘旺旺,等.羊胎盘抗氧化肽制备工艺及其体外抗氧化活性研究[J].食品工业,2015,36(5):11-15.
[23] 李娜,周德庆,刘楠,等.鳕鱼鱼鳔抗氧化肽制备工艺研究[J].渔业科学进展,2020,42(2):191-199.
[24] 申彩红.海参肽的酶法制备及其抗氧化、抗疲劳活性研究[D].厦门:华侨大学,2015:56.
[25] 丁树慧,齐曼婷,齐斌,等.低值海洋鱼低聚肽抗氧化和抗疲劳活性[J].食品科学,2019,40(1):155-161.
[26] 胡小军,江敏,莫秋远,等.鱿鱼肌肉蛋白肽的制备工艺优化及其抗氧化活性[J].食品工业科技,2017,38(5):191-195.
[27] 安攀宇,肖岚,何佩芸,等.菌酶联合制备猪血抗氧化低聚肽[J].食品研究与开发,2018,39(19):162-169.
[28] 田裕心,彭亚博,姚昱锟,等.响应面优化鲍鱼内脏抗氧化肽制备工艺及其活性[J].食品工业,2019,40(4):110-115.
[29] 张江涛,秦修远,周明,等.林蛙低聚肽的体外抗氧化与ACE抑制作用[J].中国食品添加剂,2019,30(6):46-53.
[30] 高丹丹,兰家国,赵佩佩,等.中性蛋白酶水解藏羊血清蛋白制备抗氧化肽的研究[J].食品工业科技,2015,36(15):229-233.
[31] 梁杰,赵晓旭,汪秀妹,等.鲍鱼水解肽的抗氧化活性评价组成分析及稳定性研究[J].福州大学学报,2019,47(2):479-284.
[32] 张江涛,秦修远,贾福怀,等.卵白蛋白低聚肽的体外抗氧化及ACE抑制作用[J].食品与发酵工业,2019,42(12):67-74.
[33] 卢素珍,涂宗财,王辉,等.二步酶解法制备鱼鳞明胶抗氧化肽及其抗氧化活性[J].食品与机械,2019,35(5):160-166.
[34] 何喜珍,牛延宁,金明飞,等.不同分子量大豆多糖的表征和抗氧化研究[J].大豆科学,2016,35(5):805-809.
[35] 刘泽宇.基于FT-IR和CD色谱分析方法解析PEF技术影响松子源抗氧化五肽活性与二级结构的实验研究[D].长春:吉林大学,2017:67.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.