•  
  •  
 

Abstract

Using water retention capability and oil-binding capability as indices, the effects of the factors such as insert spacing of colloid mill, ratio of liquid to solid and milling time on the indices were evaluated, and the optimal conditions of the modification were obtained by a Box-Behnken experiment. The results showed that the optimal modification conditions were: insert spacing of 13 μm, ratio of liquid to solid of 90∶1 (mL/g) and milling time of 7.5 min. After crushing under such conditions, the KPDF had an average particle size (D50) of 58 μm, lower than that before modification by 94.42%; the KPDF possessed a water retention capacity of 12.47 g/g and an oil-binding capacity of 5.45 g/g, higher than those prior to modification by 136.09% and 63.34%, respectively. The swelling capacity, solubility and cation exchange capacity of the modified KPDF reached 11.56 mL/g, 15.70% and 23.10 mmol/g, respectively, higher than those prior to modification by 157.26%, 80.46% and 31.62%. The results indicate that the modification with colloid mill is significantly effective, and the modified KPDF has excellent functional and physicochemical properties.

Publication Date

5-28-2020

First Page

182

Last Page

186,193

DOI

10.13652/j.issn.1003-5788.2020.05.034

References

[1] FULLER S,BECK E,SALMAN H,et al.New horizons for the study of dietary fiber and health:A review[J].Plant Foods for Human Nutrition,2016,71(1):1-12.
[2] 刘楠,孙永,李月欣,等.膳食纤维的理化性质、生理功能及其应用[J].食品安全质量检测学报,2015,6(10):3 959-3 963.
[3] 吴永红,李辰.基于SWOT比较的中国猕猴桃产业发展现状分析及对策建议[J].农村经济,2013(2):60-63.
[4] DIAS M,CALEJA C,PEREIRA C,et al.Chemical composition and bioactive properties of byproducts from two different kiwi varieties[J].Food Research International,2020,127:108753.
[5] 苗壮,樊明涛,程拯艮,等.响应面优化亚临界水提取猕猴桃皮渣中果胶及其品质分析[J].食品工业科技,2016,37(12):288-294.
[6] GUO Cai-xia,QIAO Jin-ping,ZHANG Sheng-wan,et al.Purification of polyphenols from kiwi fruit peel extracts using macroporous resins and high-performance liquid chromatography analysis[J].International Journal of Food Science and Technology,2018,53(6):1 486-1 493.
[7] 刘蓉,何红艳,王平.猕猴桃皮吸附剂的制备及其吸附性能的研究[J].广东化工,2019,46(4):26-27,35.
[8] 李加兴,刘飞,范芳利,等.响应面法优化猕猴桃皮渣可溶性膳食纤维提取工艺[J].食品科学,2009,30(14):143-148.
[9] 杨明华,太周伟,俞政全,等.膳食纤维改性技术研究进展[J].食品研究与开发,2016,37(10):207-210.[ZK)]
[10] SPOTTI M J,CAMPANELLA O H.Functional modifications by physical treatments of dietary fibers used in food formulations[J].Current Opinion in Food Science,2017,15:70-78.
[11] 丁莎莎,黄立新,张彩虹,等.高压均质和胶体磨改性对油橄榄果渣水不溶性膳食纤维性能的影响[J].食品与机械,2017,33(8):10-13,18.
[12] 程明明.西番莲果皮水不溶性膳食纤维提取、改性及功能特性研究[D].广州:华南农业大学,2016:31-49.
[13] MORALES-MEDINA R,DONG Dan,SCHALOW S,et al.Impact of microfluidization on the microstructure and functional properties of pea hull fibre[J].Food Hydrocolloids,2020,103:105660.
[14] ROUHOU M C,ABDELMOUMEN S,THOMAS S,et al.Use of green chemistry methods in the extraction of dietary fibers from cactus rackets(Opuntia ficus indica):Structural and microstructural studies[J].International Journal of Biological Macromolecules,2018,116:901-910.
[15] 杨健,王立东,包国凤.超微粉碎对小米麸皮膳食纤维物理特性的影响[J].食品工业科技,2013,34(13):128-131.
[16] 张根生,葛英亮,聂志强,等.马铃薯渣不溶性膳食纤维超微粉碎改性工艺优化[J].食品与机械,2015,31(6):186-189.
[17] 令博.葡萄皮渣膳食纤维的改性及其生理功能和应用研究[D].重庆:西南大学,2012:15-16.
[18] 金文筠,HUSSAIN Shehzad,严守雷,等.超微粉碎对藕节膳食纤维理化性质的影响[J].食品安全质量检测学报,2015,6(6):2 071-2 076.
[19] 李梁.杏皮皮渣膳食纤维理化性质分析及应用研究[D].乌鲁木齐:新疆农业大学,2012:19.
[20] 李莉,张赛,何强,等.响应面法在试验设计与优化中的应用[J].实验室研究与探索,2015,34(8):41-45.
[21] 潘曼.猕猴桃渣膳食纤维制备工艺及其性质的研究[D].长沙:中南林业科技大学,2009:45-47.
[22] 杨远通.猕猴桃渣膳食纤维改性及其应用研究[D].长沙:中南林业科技大学,2011:13-31.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.