Abstract
In this paper, motion formulae of two degree freedom seven-bar mechanism are derived a mathematical model is established for optimal design of the seven-bar leg mechanism of mobile robot. The elliptic trajectory curve with the long half axis of 100 mm and the short half axis of 40 mm is selected as the relative ideal trajectory curve of robot foot endpoint. The two degree freedom seven-bar robot leg mechanism is optimized by using the genetic algorithm. The foot endpoint actual trajectory curve of the optimized seven-bar leg mechanism of robot almost coincides with the ideal elliptic trajectory curve. The maximum and minimum x coordinates of the foot endpoint are respectively 100.035 mm and 100.036 mm, and the maximum and minimum y coordinates are respectively 40.005 mm and 40.009 mm. The maximum relative error with the long axis and short axis radius of the ideal ellipse trajectory is only 0.036%. Applying the optimized two degree freedom seven-bar robot leg mechanism, the hexapod simulation robot is designed. The motion simulation of the optimized seven-bar robot leg mechanism and the hexapod simulation robot are carried out by UG software, and the simulation result are satisfactory.
Publication Date
7-28-2020
First Page
87
Last Page
91,186
DOI
10.13652/j.issn.1003-5788.2020.07.018
Recommended Citation
Zhong-hua, LUO
(2020)
"Optimum design of two degree freedom seven-bar robot leg mechanism,"
Food and Machinery: Vol. 36:
Iss.
7, Article 18.
DOI: 10.13652/j.issn.1003-5788.2020.07.018
Available at:
https://www.ifoodmm.cn/journal/vol36/iss7/18
References
[1] 钱敏,张兴国.模块化电子气动工业机器人系统设计[J].食品与机械,2016,32(9):71-73.
[2] 王田苗,陶永.我国工业机器人技术现状与产业化发展战略[J].机械工程学报,2014,50(9):1-13.
[3] SEMINI C,TSAGARAKIS N G,GUGLIELMINO E,et al.Design of HyQ:A hydraulically and electrically actuated quadruped robot[J].Proceedings of the Institution of Mechanical Engineers,Part I:Journal of Systems and Control Engineering,2011,225(6):831-849.
[4] 王立鹏,王军政,汪首坤,等.基于足端轨迹规划算法的液压四足机器人步态控制策略[J].机械工程学报,2013,49(1):39-44.
[5] 余剑武,舒新,罗红,等.灌装机中弧面凸轮建模与造型研究[J].食品与机械,2016,32(6):77-82.
[6] 席晓燕.推料机构凸轮轮廓曲线设计仿真及误差分析[J].食品与机械,2017,33(2):77-80.
[7] 赵漫漫,吴佳,何雪明,等.高速凸轮变系数多项式凸轮曲线的研究[J].食品与机械,2018,34(3):98-102.
[8] 曲梦可.变胞变尺度轮腿混合四足机器人研究[D].秦皇岛:燕山大学,2017:1-4.
[9] 高峰,郭为忠.中国机器人的发展战略思考[J].机械工程学报,2016,52(7):1-5.[ZK)]
[10] 刘静,赵晓光,谭民.腿式机器人的研究综述[J].机器人,2006,28(1):81-88.
[11] 陈奇,张祺,姚志刚,等.面向足式机器人腿部运动的组合机构反求设计[J].机械与电子,2018,36(5):71-74,80.
[12] 张陈曦,吴胜权,何永,等.仿生步行机器人腿部八连杆机构轨迹优化[J].机械传动,2018,42(6):39-43.
[13] 章永年,王美思,吴阳,等.五连杆足式机器人腿部机构多目标优化算法[J].农业机械学报,2016,47(10):398-404.
[14] 柏龙,龙樟,陈晓红,等.连续电驱动四足机器人腿部机构设计与分析[J].机器人,2018,40(2):136-145.
[15] 李满宏,张小俊,张建华,等.面向给定轨迹的六足机器人多足协调控制[J].华中科技大学学报(自然科学版),2015,43(4):32-37.
[16] 罗中华,杨雨.揉面机四杆机构的优化设计[J].机械设计,2013,30(6):44-47.
[17] 王小平,曹立明.遗传算法:理论、应用与软件实现[M].西安:西安交通大学出版社,2002:155-156.
[18] 北京兆迪科技有限公司.UG NX10.0运动仿真与分析教程[M].北京:机械工业出版社,2015:135-139.