Abstract
In order to characterize lipid metabolism of yeasts during sufu manufacture, 23 isolates from sufu pehtze and acidic tofu whey were identified. Ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was used to analyse the lipid fingerprints of 7 strains of yeast, after the determination of lipase activities. It is suggested that lipid fingerprint mainly includes 2 kinds of sphingosine, 16 kinds of amide, 22 kinds of ester and 3 kinds of fatty acid. Kluyveromyces marxianus SP-1 and Candida (Pichia) norvegensis SP-5 show highest relative amount of 2-Amino-1,3,4-octadecanetrio and N, N-Dimethylsphingosine, which indicates potential for sphingolipids synthesis. Candida ethanolica ATW-1, Pichia kudriavzeviiSP-4 and Pichia kudriavzevii Y with higher cell-bound lipase activities have more abundant esters. PCA analysis further illustrates the lipid composition of these three strains are more similar to each other. The results indicate that the abundant lipids in yeasts may be closely related to cell-binding lipase.
Publication Date
7-28-2020
First Page
11
Last Page
16,58
DOI
10.13652/j.issn.1003-5788.2020.07.003
Recommended Citation
Si-kai, CHEN; Sheng-jie, LIN; and Li, LI
(2020)
"Identification and polar lipid composition analysis of yeasts isolated from sufu manufacture,"
Food and Machinery: Vol. 36:
Iss.
7, Article 3.
DOI: 10.13652/j.issn.1003-5788.2020.07.003
Available at:
https://www.ifoodmm.cn/journal/vol36/iss7/3
References
[1] GASPAR M L,AREGULLIN M A,JESCH S A,et al.The emergence of yeast lipidomics[J].Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids,2007,1 771(3):241-254.
[2] ZUELLIG T,KOEFELER H C.High resolution mass spectrometry in lipidomics[J].Mass Spectrometry Reviews,2020,DOI:10.1002/mas.21627.
[3] EJSING C S,SAMPAIO J L,SURENDRANATH V,et al.Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry[J].Proceedings of the National Academy of Sciences of the United States of America,2009,106(7):2 136-2 141.
[4] ZHAO C,GU D,NAMBOU K,et al.Metabolome analysis and pathway abundance profiling of Yarrowia lipolytica cultivated on different carbon sources[J].Journal of Biotechnology,2015,206:42-51.
[5] TAKAKU H,MATSUZAWA T,YAOI K,et al.Lipid metabolism of the oleaginous yeastLipomyces starkeyi[J].Applied Microbiology and Biotechnology,2020,104(14):6 141-6 148.
[6] TAMPITAK S,LOUHASAKUL Y,CHEIRSILP B,et al.Lipid production from Hemicellulose and Holocellulose Hydrolysate of palm empty fruit bunches by newly isolated Oleaginous yeasts[J].Applied Biochemistry and Biotechnology,2015,176(6):1 801-1 814.
[7] SANKH S,THIRU M,SARAN S,et al.Biodiesel production from a newly isolated Pichia kudriavzevii strain[J].Fuel,2013,106:690-696.
[8] 刘虎威,白玉.脂质组学及其分析方法[J].色谱,2017(1):86-90.
[9] 张婷婷.极性脂质的质谱分析方法研究及其应用[D].杭州:浙江工商大学,2015:5-9.
[10] FERDOUSE J,YAMAMOTO Y,TAGUCHI S,et al.Glycosylceramide modifies the flavor and metabolic characteristics of sake yeast[J].Peerj,2018,6(9):e4768.
[11] 王春龙.红茶菌发酵饮料中的菌群分析与功能评价[D].天津:天津科技大学,2017:25.
[12] 努尔古丽·热合曼,陈晓红,董明盛.新疆酸驼乳微生物种群结构的PCR-DGGE分析[J].食品科学,2010,31(11):136-140.
[13] ALCAZAR-VALLE M,GSCHAEDLER A,GUTIERREZ-PULIDO H,et al.Fermentative capabilities of native yeast strains grown on juices from different Agave species used for tequila and mezcal production[J].Brazilian Journal of Microbiology,2019,50(2):379-388.
[14] JIAN M.Control of blue and green mold decay of citrus fruit by Pichia membranefaciens and induction of defense responses[J].Scientia Horticulturae,2012,135(1):120-127.
[15] 吴玥,周峻岗,吕红.信号肽对木聚糖酶在马克斯克鲁维酵母中分泌表达的影响[J].复旦学报(自然科学版),2017,56(4):446-454.
[16] 侯胜博,冯华良,高教琪,等.马克斯克鲁维酵母的木糖和阿拉伯糖发酵[J].生物工程学报,2017,33(6):923-935.
[17] 杨文丹,张宾乐,庄靓,等.发酵麦麸对面包面团生化特征及烘焙学特性的影响[J].食品与机械,2018,34(3):6-11.
[18] 邹奇波,程新,陈诚,等.混菌发酵酸面团对全麦面包风味与烘焙特性的影响[J].食品与机械,2020,36(4):32-39.
[19] HOUNGBDJI M,JOHANSEN P,PADONOU S W,et al.Occurrence of lactic acid bacteria and yeasts at species and strain level during spontaneous fermentation of mawè,a cereal dough produced in West Africa[J].Food Microbiology,2018,76:267-278.
[20] CHAMNIPA N,THANONKEO S,KLANRIT P,et al.The potential of the newly isolated thermotolerant yeast Pichia kudriavzevii RZ8-1 for high-temperature ethanol production[J].Brazilian Journal of Microbiology,2018,49(2):378-391.
[21] HONG S M,KWON H J,PARK S J,et al.Genomic and probiotic characterization of SJP-SNU strain of Pichia kudriavzevii[J].Amb Express,2018,8(1):80.
[22] YUANGSAARD N,YONGMANITCHAI W,YAMADA M,et al.Selection and characterization of a newly isolated thermotolerant Pichia kudriavzevii strain for ethanol production at high temperature from cassava starch hydrolysate[J].Antonie Van Leeuwenhoek,2013,103(3):577-588.
[23] HISAMATSU M F T,KARITA S,MISHIMA T,et al.Isolation and identification of a novel yeast fermenting ethanol under acidic conditions[J].J Appl Glycosci,2006,53(2):111-113.
[24] KITAGAWA T T K,SUGIYAMA H.Construction of a beta-glucosidase expression system using the multistress-tolerant yeast Issatchenkia orientalis[J].Appl Microbiol Biotechnol,2010,87(5):1 841-1 853.
[25] HELLSTROM A M,VAZQUES-JUAREZ R,SVANBE-RG U,et al.Biodiversity and phytase capacity of yeasts isolated from Tanzanian togwa[J].International Journal of Food Microbiology,2010,136(3):352-358.
[26] FLORENTINA M R,ELENA B,GETUTA N,et al.Yeast biodiversity evolution over decades in Dealu Mare-Valea Calugareasca vineyard[J].Romanian Biotechnological Letters,2011,16(1):113-120.
[27] MING Chun-yan,HUANG Jin,WANG Yan-yan,et al.Revision of the medically relevant species of the yeast genus Diutina[J].Medical Mycology Official Publication of the International Society for Human & Animal Mycology,2018,57(2):226-233.
[28] 万力,宋志霞,杨芦蓉,等.腹膜透析隧道阿萨希毛孢子菌感染1例[J].中国真菌学杂志,2018,13(2):93-94.
[29] RAJU D S,SUGUNAN A,KEECHILATTU P,et al.Chemoport-related fungemia caused by Trichosporon asahii[J].Journal of Pediatric Hematology/Oncology,2020,42(3):393-400.
[30] 冯静文.Pichia amenthionina Y的分离鉴定及去除豆腥味研究[D].广州:华南理工大学,2017:27,46.
[31] 胡珺,杜新凯,王常高,等.产脂肪酶菌株的筛选鉴定及产酶条件优化[J].中国酿造,2016,35(11):39-43.
[32] 贺秋红,巩志金,颜梅.产脂肪酶菌株的筛选、鉴定及发酵培养基优化[J].中国酿造,2019,38(10):84-88.
[33] GRSCH S,SCHIFFMANN S,GEISSLINGER G.Chain length-specific properties of ceramides[J].Progress in Lipid Research,2012,51(1):50-62.
[34] TSUJI K,MITSUTAKE S,ISHIKAWA J,et al.Dietary glucosylceramide improves skin barrier function in hairless mice[J].Journal of Dermatological Science,2006,44(2):101-107.
[35] RUPCIC J,MARIC V.Cerebrosides of Candida lipolytica yeast[J].Applied Microbiology & Biotechnology,2004,64(3):416.
[36] MEGYERI M,RIEZMAN H,SCHULDINER M,et al.Making sense of the yeast sphingolipid pathway[J].Journal of Molecular Biology,2016,428(24):4 765-4 775.
[37] DICKSON R C,LESTER R L.Metabolism and selected functions of sphingolipids in the yeast Saccharomyces cerevisiae[J].Biochimica Et Biophysica Acta,1999,1 438(3):305-321.
[38] KWUN K H,LEE J H,RHO K H,et al.Production of ceramide with Saccharomyces cerevisiae[J].Applied Biochemistry & Biotechnology,2006,133(3):203-210.