•  
  •  
 

Authors

JIA Fa-tong, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306 , China ;ShanghaiProfessional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation,Shanghai 201306 , China ;National Experimental Teaching Demonstration Center for Food Science andEngineering, Shanghai Ocean University, Shanghai 201306 , China ;College of Food Science and Technology,Shanghai Ocean University 201306 , China
YANG Da-zhang, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306 , China ;ShanghaiProfessional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation,Shanghai 201306 , China ;National Experimental Teaching Demonstration Center for Food Science andEngineering, Shanghai Ocean University, Shanghai 201306 , China ;College of Food Science and Technology,Shanghai Ocean University 201306 , China
XIE Jing, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306 , China ;ShanghaiProfessional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation,Shanghai 201306 , China ;National Experimental Teaching Demonstration Center for Food Science andEngineering, Shanghai Ocean University, Shanghai 201306 , China ;College of Food Science and Technology,Shanghai Ocean University 201306 , China
WANG Jin-feng, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306 , China ;ShanghaiProfessional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation,Shanghai 201306 , China ;National Experimental Teaching Demonstration Center for Food Science andEngineering, Shanghai Ocean University, Shanghai 201306 , China ;College of Food Science and Technology,Shanghai Ocean University 201306 , China

Abstract

The influence of cargo stack, air supply velocity, air supply form, the fan position and other factors on the temperature distribution of refrigerated containers is reviewed, and the spatial distribution characteristics of the temperature field in the container are also expounded. The relevant factors affecting the temperature distribution in the container are compared and analyzed, and its future development direction is prospected.

Publication Date

7-28-2020

First Page

216

Last Page

220

DOI

10.13652/j.issn.1003-5788.2020.07.043

References

[1] 洪桂香.冷链运输潜力巨大冷藏车将成行业支柱[J].发展改革理论与实践,2017,11(1):37-41.
[2] 交通运输部提速冷链物流发展[J].中国物流与采购,2017(18):53.
[3] ZHAO Hong-xia,LIU Sheng,TIAN Chang-qing,et al.An overview of current status of cold chain in China[J].International Journal of Refrigeration,2018,88:483-495.
[4] JARA P B T,RIVERA J J A,MERINO C E B,et al.Thermal behavior of a refrigerated vehicle:Process simulation[J].International Journal of Refrigeration,2019,100:124-130.
[5] HAN Jia-wei,ZHU Wen-ying,JI Zhen-tao.Comparison of veracity and application of different CFD turbulence models for refrigerated transport[J].Artificial Intelligence in Agriculture,2019,62(3):11-17.
[6] 霍玳.海运冷藏集装箱货损案例分析[J].中国远洋海运,2017(11):60-62.
[7] 楼海军,阚安康.货物堆码方式对海运冷藏集装箱内温度场分布的影响[J].上海海事大学学报,2014,35(4):55-88,74.
[8] 朱奎.我国食品冷藏集装箱运输节能技术[J].集装箱化,2012,23(5):27-29.
[9] BUDIYANTO M,SHINODA T.The effect of solar radiation on the energy consumption of refrigerated container[J].Case Studies in Thermal Engineering,2018,96(12):687-695.
[10] 佘昊原.陆路冷藏集装箱结构特点及设计[J].科技风,2019,13(34):118.
[11] 高超.海运冷藏集装箱内部温度场研究[D].大连:大连海事大学,2018:32-50.
[12] 我国冷链物流行业快速发展期需突破四方面瓶颈[J].环球聚氨酯,2018(7):28.
[13] 娄宗瑞,曹丹,阚安康,等.冷藏集装箱内部温度场的特性研究[J].制冷,2013,32(1):23-25.
[14] 傅泽田,王大鹏,张国祥,等.冷藏车水产品堆栈方式对温度场的影响[J].农业机械学报,2019,50(9):347-356.
[15] 田津津,王飒飒,张哲,等.冷藏集装箱内部流场的动态数值模拟与验证[J].食品与机械,2016,32(4):136-142.
[16] 张哲,郝俊杰,李曼,等.冷藏集装箱内部温度场的理论与实验研究[J].低温与超导,2016,44(6):76-80.
[17] 曾晰.火龙果堆码方式对冷藏库内气体流场分布的影响[J].农技服务,2019,36(1):37-40.
[18] 赵东夏,杨万枫,应豪.考虑货物热源时冷藏集装箱室内空气流场分析[J].集装箱化,2016,27(3):24-26.
[19] 李曼.冷藏集装箱内部流场及送风形式的研究[D].天津:天津商业大学,2015:67.
[20] 李艺哲,谢晶.大型冷库内温度场的数值模拟与优化[J].食品与机械,2017,33(6):139-142,179.
[21] 刘亚姣,杨小凤,庄春龙,等.果蔬堆码方式对机械式冷藏集装箱内温度场的影响[J].后勤工程学院学报,2015,31(6):67-72.
[22] 黄磊.果蔬冷藏库热湿环境数值模拟研究[D].西安:西安建筑科技大学,2014:48.
[23] 郭志鹏,阚安康,孟闯,等.冷藏集装箱内温度场的数值模拟与实验[J].上海海事大学学报,2017,38(2):82-87.
[24] 王安冉.基于CFD的冷藏车内流场及温度场的数值研究[D].济南:山东大学,2017:49.
[25] 陈邦器,阚安康,华宇捷,等.货物堆码方式对冷藏集装箱内温度分布的影响[J].低温与超导,2017,45(11):63-67,96.
[26] MOUREH J,FLICK D.Airflow pattern and temperature distribution in a typical refrigerated truck configuration loaded with pallets[J].International Journal of Refrigeration,2004,27(5):464-474.
[27] 赵春江,韩佳伟,杨信廷,等.基于CFD的冷藏车车厢内部温度场空间分布数值模拟[J].农业机械学报,2013,44(11):168-173.
[28] 张娅妮,陈洁,陈蕴光,等.机械式冷藏车中货物装载间隙对厢内温度场的影响[J].制冷与空调,2007,7(4):101-104.
[29] HOANG H M,DURET S,FLICK D,et al.Preliminary study of airflow and heat transfer in a cold room filled with apple pallets:Comparison between two modelling approaches and experimental results[J].Applied Thermal Engineering,2015,76:367-381.
[30] AMBAW A,DELELE M A,DEFRAEYE T,et al.The use of CFD to characterize and design post-harvest storage facilities:Past,present and future[J].Computers and Electronics in Agriculture,2013,93:184-194.
[31] XU Xiao-feng,ZHANG Xue-lai,MUNYALO J M.Simulation study on temperature field and cold plate melting of cold storage refrigerator car[J].Energy Procedia,2017,142:3 394-3 400.
[32] 栗栋,李君,王海林,等.计算流体力学在贮运保鲜装备研发中的应用进展[J].食品工业,2015,36(1):214-216.
[33] HO S H,ROSARIO L,RAHMAN M M.Numerical simulation of temperature and velocity in a refrigerated warehouse[J].International Journal of Refrigeration,2010,33(5):1 015-1 025.
[34] DEFRAEYE T,CRONJ P,VERBOVEN P,et al.Exploring ambient loading of citrus fruit into reefer containers for cooling during marine transport using computational fluid dynamics[J].Postharvest Biology and Technology,2015,108:91-101.
[35] 闫哲,李艳.冷藏集装箱的非稳态数值模拟[J].建筑热能通风空调,2018,37(7):50-54.
[36] 白通通.果蔬冷藏库竖壁贴附送风模式流场特性的研究[D].西安:西安建筑科技大学,2018:56.
[37] XIE Jing,QU Xiao-hua,SHI Jun-ye,et al.Effects of design parameters on flow and temperature fields of a cold store by CFD simulation[J].Journal of Food Engineering,2006,77(2):355-363.
[38] 申江,李超,苗惠,等.冷藏运输车内气体流场的数值模拟及分析[J].低温与超导,2010,38(11):46-52,57.
[39] 尹海国,陈厅,孙翼翔,等.竖直壁面贴附式送风模式气流组织特性及其影响因素分析[J].建筑科学,2016,32(8):33-39.
[40] 张娅妮,陈洁,陈蕴光,等.机械式冷藏汽车厢体内部气流组织模拟研究[J].制冷空调与电力机械,2007,28(2):10-13.
[41] 尹海国,李安桂.竖直壁面贴附式送风模式气流组织特性研究[J].西安建筑科技大学学报(自然科学版),2015,47(6):879-884.
[42] 王国栋.一种新型通风方式:非等温条件下条缝型送风口形式的竖壁贴附射流通风模式的2D PIV实验研究[D].西安:西安建筑科技大学,2009:62.
[43] 肖诗洋.机械冷藏车车内流场数值计算[D].大连:大连交通大学,2016:57.
[44] 张婷婷,阚安康,曹丹,等.船舶冷藏集装箱内部温度分布的模拟与优化[J].制冷,2013,32(4):20-25.
[45] 郭嘉明,吕恩利,陆华忠,等.冷藏运输厢体结构对流场影响的数值模拟[J].农业工程学报,2012,28(增刊1):74-80.
[46] 刘晓菲,南晓红.装设均匀送风管道对冷藏库气流流场特性的改善[J].农业工程学报,2016,32(1):91-96.
[47] 张东霞,吕恩利,陆华忠,等.保鲜运输车温度场分布特性试验研究[J].农业工程学报,2012,28(11):254-260.
[48] JIANG Tao,XU Nan-qing,LUO Bao-jun,et al.Analysis of an internal structure for refrigerated container:Improving distribution of cooling capacity[J].International Journal of Refrigeration,2020,330(2):895-902.
[49] 冷俊材,贾晓昱,熊忠飞,等.果蔬气调集装箱优化设计研究[J].食品科技,2019,44(8):37-41.
[50] 杜子峥,谢晶,朱进林.数值模拟技术预测风机两种摆放方式对冷库堆垛货物的影响[J].食品与机械,2015,31(3):145-149,157.
[51] 李福良.冷库气流组织建模及优化研究[D].哈尔滨:哈尔滨商业大学,2014:47.
[52] 周轲,王瑞华,孙海亭,等.CFD模拟两种风机位置的苹果冷藏库的温度场[J].中国农机化学报,2016,37(7):75-79,105.
[53] 周轲.苹果冷藏库运行期间温湿度分布的模拟分析[D].杨凌:西北农林科技大学,2016:11-17.
[54] 谢培志.冷藏集装箱工况模拟及实验研究[D].上海:上海海事大学,2006:43.
[55] 李锦.易腐食品冷藏运输温度调控及优化研究[D].长沙:中南大学,2013:42-48.
[56] 王文文.冷藏车保温材料对内部环境影响的模拟研究[D].北京:北京建筑工程学院,2012:43.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.