Abstract
Based on the hyperspectral imaging technology, a non-destructive detection method for pesticide residues on fruit surfaces is proposed. By preprocessing the collected data and extract features, finding the optimal least squares support vector machine parameters through the bacterial population chemotaxis algorithm, a pesticide residue detection model was established, which was compared with the least squares support vector machine model to verify the superiority and accuracy the model. The results showed that the detection model had the highest detection accuracy based on the characteristic wavelength of the continuous projection method combined with the detection model, and its accuracy rate was 97.92%, which had certain application value.
Publication Date
1-28-2021
First Page
99
Last Page
103
DOI
10.13652/j.issn.1003-5788.2021.01.015
Recommended Citation
Meng, ZHANG and Shi-jie, JIA
(2021)
"Nondestructive detection of pesticide residues on fruit surface by hyperspectral imaging technology,"
Food and Machinery: Vol. 37:
Iss.
1, Article 15.
DOI: 10.13652/j.issn.1003-5788.2021.01.015
Available at:
https://www.ifoodmm.cn/journal/vol37/iss1/15
References
[1] 赵利平, 吴德刚. 基于小波与模糊相融合的苹果分级算法[J]. 食品与机械, 2020, 36(4): 142-145.
[2] 项辉宇, 薛真, 冷崇杰, 等. 基于Halcon的苹果品质视觉检测试验研究[J]. 食品与机械, 2016, 32(10): 123-126.
[3] 杨昌彪, 付春燕, 罗廷武, 等. QuECHERS-LC-MS/MS快速检测番茄18种农药残留[J]. 江苏农业科学, 2020, 48(9): 218-222.
[4] 薄璐, 王立霞. 基于视觉图像识别的番茄表面农药残留量无损检测方法[J]. 食品与机械, 2019, 35(3): 63-71.
[5] 姚蕴恒, 白龙律, 武伦鹏, 等. SPE-GC/MS 测定苹果梨中19种有机氯农药残留[J]. 食品与机械, 2019, 35(12): 87-95.
[6] 张晶, 韩建龙, 沈海涛, 等. 气相色谱—串联质检法检测蔬菜中8种氨基甲酸酯类农药残留[J]. 食品安全质量检测学报, 2020, 11(15): 5 045-5 051.
[7] 徐洁, 杨杰, 孙静涛, 等. 基于高光谱技术的哈密瓜表面农药残留判别分析[J]. 江苏农业科学, 2016, 44(12): 338-340.
[8] 李增芳, 楚秉泉, 章海亮, 等. 高光谱成像技术无损检测赣南脐橙表面农药残留研究[J]. 光谱学与光谱分析, 2016, 36(12): 4 034-4 038.
[9] 赵曼彤, 李柏承, 周瑶, 等. 香梨表面低浓度农药残留高光谱检测研究[J]. 光学技术, 2016, 42(5): 408-412, 418.
[10] HU Jian-jiang, FICHTNER Maximilian, BARICCO Marcello. Preparation of Li-Mg-N-H hydrogen storage materials for an auxiliary power unit[J]. International Journal of Hydrogen Energy, 2017, 42(27): 17 144-17 148.
[11] LIU Guang-ming, YANG Ming-gan, LANG Guang, et al. Analysis of the heat generation of lithium-ion battery during charging and discharging considering different influencing factors[J]. Journal of Thermal Analysis & Calorimetry, 2014, 116(2): 1 001-1 010.
[12] ULRIKE K, FRIDOLIN R, ERANDA H, et al. Review: Dynamic models of Li-Ion batteries for diagnosis and operation: A review and perspective[J]. Journal of the Electrochemical Society, 2018, 165(16): 3 656-3 673.
[13] HOU Kai-yuan, SHAO Guang-hui, WANG Hai-ming, et al. Research on practical power system stability analysis algorithm based on modified SVM[J]. Protection and Control of Modern Power Systems, 2018, 3(2): 2-7.
[14] GAUTAN J V, PRAJAPATI H B, DABHI V K, et al. Empirical study of job scheduling algorithms in hadoop MapReduce[J]. Cybernetics and Information Technologies, 2017, 21(1): 146-163.
[15] CAETANOC E F, LIMAA B, PAULINO J O S, et al. A conductor arrangement that overcomes the effective length issue in transmission line grounding[J]. Electric Power Systems Research, 2018, 46(5):159-162.
[16] SONG Zi-you, LI Jian-qiu, HOU Jun, et al. The optimization of a hybrid energy storage system at subzero temperatures: Energy management strategy design and battery heating requirement analysis[J]. Applied Energy, 2015, 159: 576-588.
[17] KERESZTES J C, GOODARZI M, SAEYS W. Real-time pixel based early apple bruise detection using short wave infrared hyperspectral imaging in combination with calibration and glare correction techniques[J]. Food Control, 2016, 66(1): 215-226.
[18] JIA Zhi-wei, WANG Li-jun, ZHANG Jin-chuan, et al. High efficiency, low power-consumption DFB quantum cascade lasers without lateral regrowth[J]. Nanoscale Research Letters, 2017, 12(1): 88-95.
[19] AZUMAYA C M, DAYS E L, VINSON P N, et al. Screening for AMPA receptor auxiliary subunit specific modulators[J]. PLoS One, 2017, 12(3): 1 523-1 538.
[20] FAN Cheng-li. Hybrid artificial bee colony algorithm with variable neighborhood search and memory mechanism[J]. Journal of Systems Engineering and Electronics, 2018, 29(2): 405-414.
[21] 王冉冉, 刘鑫, 尹孟, 等. 面向苹果硬度检测仪的声振信号激励与采集系统设计[J]. 浙江大学学报(农业与生命科学版), 2020, 46(1): 111-118.
[22] 杨双艳, 杨紫刚, 张四伟, 等. 基于近红外光谱和PSO-SVM 算法的烟叶自动分级方法[J]. 贵州农业科学, 2018, 46(12): 141-144.
[23] 于蒙, 李雄, 杨海潮, 等. 基于图像识别的苹果的等级分级研究[J]. 自动化与仪表, 2019, 34(7): 39-43.
[24] 王阳阳, 黄勋, 陈浩, 等. 基于同态滤波和改进K-means 的苹果分级算法研究[J]. 食品与机械, 2019, 35(12): 47-51, 112.
[25] 王立扬, 张瑜, 沈群, 等. 基于改进型 LeNet-5的苹果自动分级方法[J]. 中国农机化学报, 2020, 41(7): 105-110.