•  
  •  
 

Authors

QIAN Xiao-qing, Hubei Agricultural Science and Technology Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Wuhan, Hubei 430064, China; School of Food and Biological Engineering, Hubei University of Technology, Wuhan, Hubei 430064, China
ZHU Meng, Hubei Agricultural Science and Technology Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Wuhan, Hubei 430064, China; School of Food and Biological Engineering, Hubei University of Technology, Wuhan, Hubei 430064, China
SHI Gang-peng, Hubei Agricultural Science and Technology Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Wuhan, Hubei 430064, China; School of Food and Biological Engineering, Hubei University of Technology, Wuhan, Hubei 430064, China
XIONG Guang-quan, Hubei Agricultural Science and Technology Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Wuhan, Hubei 430064, China; Hubei Agricultural Science and Technology Innovation Center, Wuhan, Hubei 430064, China
SHI Liu, Hubei Agricultural Science and Technology Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Wuhan, Hubei 430064, China; Hubei Agricultural Science and Technology Innovation Center, Wuhan, Hubei 430064, China
WU Wen-jin, Hubei Agricultural Science and Technology Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Wuhan, Hubei 430064, China; Hubei Agricultural Science and Technology Innovation Center, Wuhan, Hubei 430064, China
WANG Lan, Hubei Agricultural Science and Technology Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Wuhan, Hubei 430064, China; Hubei Agricultural Science and Technology Innovation Center, Wuhan, Hubei 430064, China
WANG Shun-zhi, Yangxin County Agricultural and Rural Bureau, Huangshi, Hubei 435200, China
DING An-zi, Hubei Agricultural Science and Technology Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Wuhan, Hubei 430064, China; Hubei Agricultural Science and Technology Innovation Center, Wuhan, Hubei 430064, China

Abstract

To determine the freshness change of Channel catfish fillets during freeze-thaw cycles and establishprediction model using near infrared spectroscopy, Near Infrared(NIR) reflectance spectroscopy was used to collect spectral data of Channel catfish meat during 5 times freeze-thaw processing, meanwhile the contents of ATP-related compounds of fish samples were obtained by HPLC (High Performance Liquid Chromatography) to calculate the freshness of K value, then the quantitative prediction model of K value was established based on the optimal wavelengths using PLS (Partial least squares regression) method and verified by t-test. The results showed that ATP content declined rapidly (P<0.05) from 2.15 to 0.55 μmol/g after the first freeze-thaw cycle and then stabilized until the end of processing; IMP content increased from the initial value of 4.07 μmol/g to the peak value of 5.97 μmol/g (P<0.05) after the first freeze-thaw cycle and then decreased gradually (P<0.05); Hx content increased slightly until the 4th freeze-thaw cycle and then increased greatly (P<0.01) from 4.29 to 19.65 μmol/g after the 5th freeze-thaw cycle. K value significantly increased (P<0.05) throughout the freeze-thaw processing, and the catfish meat showed decompose after 3th freeze-thaw while the K value was 67.95%(overlimitation of 60%). The near-infrared spectral data was pre-processed by filter fitting method (SG) and Standard Normal Variate (SNV), which obtained the best the prediction result, with the model predictive value determination coefficient (R2) of 0.938 1, and root mean square errors of prediction (RMSEP) of 1.49. Therefore, the established model was capable to predict the freshness of fish samples.

Publication Date

1-28-2021

First Page

137

Last Page

142

DOI

10.13652/j.issn.1003-5788.2021.01.022

References

[1] 姜杨, 李婷婷, 晋高伟, 等. 草鱼冷藏过程中新鲜度的综合评价[J]. 食品科学, 2014, 35(20): 281-285.
[2] 徐晓蓉, 邢家溧, 承海, 等. 马鲛鱼冷链流通过程中感官和鲜度变化的相关性分析[J]. 核农学报, 2019, 33(11): 2 195-2 202.
[3] 刘荣珍, 李彩娟, 王永玲, 等. 白梭吻鲈冷藏期间鲜度品质的变化[J]. 食品研究与开发, 2019, 40(10): 60-64.
[4] 赵永强, 李娜, 李来好, 等. 鱼类鲜度评价指标及测定方法的研究进展[J]. 大连海洋大学学报, 2016, 31(4): 456-460.
[5] SAITO T, ARAI K, MATSUYOSHI M. A new method for estimating the freshness of fish[J]. Bulletin of Japanese Society of Scientific Fisheries, 1959, 24(9): 749-750.
[6] VANESA L, CARMEN P, JORGE B V, et al. Inhibition ofchemical changes related to freshness loss during storageof horse mackerel (Trachurustrachurus) in slurry ice[J]. Food Chemistry, 2005, 93: 625-629.
[7] 付奥, 张云云, 高燕, 等. 冷藏草鱼K值测定方法的优化及其含量变化[J]. 食品科技, 2017, 42(12): 142-146.
[8] 戚晓玉, 李燕, 周培根. 日本沼虾冰藏期ATP降解产物变化及鲜度评价[J]. 水产学报, 2010, 25(5): 483-484.
[9] 张龙腾, 吕健, 李清正, 等. 鲢鱼片在微冻贮藏中品质、ATP关联物及关联酶活性变化规律研究[J]. 中国农业大学学报, 2016, 21(11): 77-83.
[10] 蓝蔚青, 孙雨晴, 肖蕾, 等. 冻融循环对大目金枪鱼组织结构与蛋白质特性变化的影响[J/OL]. 食品科学. (2020-06-01) [2020-09-26]. http:// kns. cnki. net/ kcms/ detail/ 11.2206. TS. 20200601. 1425.058.html.
[11] 姜晴晴, 邵世奇, 陈士国, 等. 冻融循环对带鱼蛋白性质及肌肉品质的影响[J]. 中国食品学报, 2016, 16(4): 122-129.
[12] 何鸿举, 王魏, 李波, 等. 近红外高光谱快速无接触评估冷鲜猪肉脂质氧化[J]. 食品与机械, 2020, 36(8): 117-122.
[13] 江水泉, 孙通. 基于可见/近红外光谱和变量选择的脐橙可溶性固形物含量在线检测[J]. 食品与机械, 2020, 36(2): 89-93.
[14] 吕都, 董楠, 王梅, 等. 近红外光谱法预测面条中马铃薯泥含量模型的建立和应用[J]. 食品与机械, 2019, 35(8): 55-58, 95.
[15] 李尚科, 杜国荣, 丁胜华, 等. 近红外光谱结合化学计量法快速无损鉴别燕麦[J]. 食品与机械, 2019, 35(2): 72-76.
[16] 刘欢, 徐文杰, 刘友明, 等. 鲫鱼新鲜度近红外定量预测模型的建立[J]. 现代食品科技, 2015, 31(7): 173-182.
[17] 孙婉玲, 杨莹, 张欣欣, 等. 鲤鱼新鲜度近红外定量预测模型的建立[J]. 吉林医药学院学报, 2017, 38(4): 254-257.
[18] 陶瑞, 史智佳, 贡慧, 等. 傅里叶变换近红外光谱技术快速检测[J]. 肉类研究, 2017, 31(4): 43-48.
[19] NIELS B, JENSENK N, ANDERSENC M, et al. Freshness assessmentof thawed and chilled cod fillets packed in modified atmosphere usingnear-infrared spectroscopy[J]. LWT-Food Science and Technology, 2002, 35(7): 628-634.
[20] KIMIYA T, SIVERTSEN A H. VIS/NIR spectroscopy for non-destructive freshness assessment of Atlantic salmon (Salmosalarl) fillets[J]. Journal of Food Engineering, 2013, 116(3): 758-764.
[21] YOKOYAMA Y, SAKAGUCHI M, KAWAI F, et al. Changes in content of ATP-related componds in various tissues of oyster during ice storage[J]. Nippon Suisan Gakkaishi, 1992, 58(11): 2 125-2 136.
[22] WATANABE E, TAMADA Y, HAMADA-SATO N. Development of quality evaluation sensor for fish freshness control based on KI value[J]. Biosensors and Bioelectronics, 2005, 21(3): 534-538.
[23] 宋永令, 罗永康, 张丽娜, 等. 不同温度贮藏期间团头鲂品质的变化规律[J]. 中国农业大学学报, 2010, 15(4): 104-110.
[24] 管骁, 饶立, 刘静, 等. 结合数据融合技术与近红外光谱的休闲苹果脆片综合品质评价[J]. 食品与机械, 2016, 32(12): 45-49.
[25] 吴依蒙, 陈舜胜, 今野久仁彦. 牙鲆在保藏过程中影响ATP关联化合物降解的因素[J]. 水产学报, 2016, 40(7): 1 114-1 122.
[26] WATABE S, USHIO H, IWAMOTO M, et al. Temperature-dependency of rigor-mortis of fish muscle: Myofibrillar Mg2+-ATPase activity and Ca2+ uptake by sarcoplasmic reticulum[J]. Journal of Food Science, 1989, 54(12): 1 107-1 109, 1 115.
[27] 杨文鸽, 薛长湖, 徐大伦, 等. 大黄鱼冰藏期间ATP关联物含量变化及其鲜度评价[J]. 农业工程学报, 2007, 23(6): 217-222.
[28] SONGSAENG S, SOPHANODORA P, KAEWSRITHONG J, et al. Quality changes in oyster (Crassostreabelcheri) during frozen storage as affected by freezing and antioxidant[J]. Food Chemistry, 2010, 123(2): 286-290.
[29] 宋雪, 邱伟强, 陈舜胜, 等. 冷藏条件下蟹肉中ATP关联产物含量变化及其降解途径的探究[J]. 食品工业科技, 2015, 37(12): 334-338.
[30] 李凯风, 罗永康, 冯启超, 等. 鱼鳞蛋白酶解物为基料的涂膜剂对鲫的保鲜效果[J]. 水产学报, 2011, 35(7): 1 113-1 119.
[31] 蒋晨毓, 邱伟强, 贠三月, 等. ATP关联化合物在鱼类贮藏过程中的降解规律[J]. 水产学报, 2018, 42(6): 3-7.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.