Abstract
To realize the rapid detection of normal peppers and defective peppers (dark spots, insect marks and stripe skin), image acquisition and median filtering were used for denoising. 24 color feature variables and 20 texture feature variables of sample images were extracted. Threshold segmentation in the Otsu algorithm was used to extract two morphological feature variables. The Successive Projections Algorithm (SPA) was used to optimize 14 feature variables. Modeling was done based on the Least Squares Support Vector Machine (LS-SVM) method. The detection result of SPA-LS-SVM model is 98.67%, which is the best.
Publication Date
1-28-2021
First Page
165
Last Page
168
DOI
10.13652/j.issn.1003-5788.2021.01.027
Recommended Citation
Rui, REN; Shu-juan, ZHANG; Hua-min, ZHAO; Hai-xia, SUN; Cheng-ji, LI; and Meng-ru, LIAN
(2021)
"Study on external quality detection of pepper based on machine vision,"
Food and Machinery: Vol. 37:
Iss.
1, Article 27.
DOI: 10.13652/j.issn.1003-5788.2021.01.027
Available at:
https://www.ifoodmm.cn/journal/vol37/iss1/27
References
[1] 毕智健, 张若宇, 齐妍杰, 等. 基于机器视觉的番茄成熟度颜色判别[J]. 食品与机械, 2016, 32(12): 133-136.
[2] 解博, 周律. 基于机器视觉的杏核图像识别系统设计[J]. 电子科技, 2016, 29(10): 97-100.
[3] 项辉宇, 薛真, 冷崇杰, 等. 基于Halcon的苹果品质视觉检测试验研究[J]. 食品与机械, 2016, 32(10): 123-126.
[4] XU Li-ming. Recognition method for apple fruit based on SUSAN and PCNN[J]. Multimedia Tools and Applications, 2018, 77(6): 7 205.
[5] ARAKERI Megha P. Computer vision based fruit grading system for quality evaluation of tomato in agriculture industry[J]. Procedia Computer Science, 2016, 79: 426-433.
[6] HABIB Md Tarek. Machine vision based papaya disease recognition[J]. Journal of King Saud University - Computer and Information Sciences, 2020, 32(3): 300-309.
[7] 陈奕云, 赵瑞瑛, 齐天赐, 等. 结合光谱变换和Kennard-Stone算法的水稻土全氮光谱估算模型校正集构建策略研究[J]. 光谱学与光谱分析, 2017, 37(7): 2 133-2 139.
[8] 宋西平, 李国琴, 罗陆锋, 等. 基于HSI色彩空间与FFCM聚类的葡萄图像分割[J]. 农机化研究, 2015, 37(10): 40-44.
[9] 薛建新, 张淑娟, 张晶晶. 高光谱成像技术对鲜枣内外部品质检测的研究[J]. 光谱学与光谱分析, 2015, 35(8): 2 297-2 302.
[10] 马志宏, 贡亮, 林可, 等. 基于稻穗几何形态模式识别的在穗籽粒数估测[J]. 上海交通大学学报, 2019, 53(2): 239-246.
[11] 李军宇, 张淑娟, 张学豪, 等. 李果实成熟度的高光谱成像判别研究[J]. 农机化研究, 2017, 39(12): 141-145.
[12] 孙海霞, 张淑娟, 薛建新, 等. 变量优选补正算法的鲜枣可溶性固形物检测模型传递方法研究[J]. 光谱学与光谱分析, 2019, 39(4): 1 041-1 046.
[13] 赵旭婷, 张淑娟, 刘蒋龙, 等. 高光谱技术结合CARS-ELM的油桃品种判别研究[J]. 现代食品科技, 2017, 33(10): 281-287.