Abstract
Taking substitution rate as an index, the effects of concentration of sulfuric acid, reaction temperature and reaction time on sulfation of Pleurotus ostreatus polysaccharides were studied by concentrated sulfuric acid method. On the basis of single-factor results, the optimum preparation process of P. ostreatus polysaccharide sulfate was obtained by L9(34) orthogonal test. Secondly, the polysaccharide and sulfates of P. ostreatus polysaccharide were characterized by FT-IR spectrometer. Finally, the reductive power of VC and the scavenging rates of DPPH radical, superoxide anion radical and hydroxyl radical were determined to explore the antioxidant activity of P. ostreatus polysaccharide sulfate. The optimum preparation process of polysaccharide sulfate of P. ostreatus was as follows: the mass of P. ostreatus polysaccharide was 1.00 g; the volume of sulfuric acid was 10 mL, reacting at 60 ℃ for 90 min, and the degree of substitution was 0.48. FT-IR spectrum results showed that sulfate group and P. ostreatus polysaccharide formed polysaccharide sulfate. The IC50( scavenging rate) of polysaccharide sulfate from P. ostreatus were 0.816, 1.882 and 1.611 mg/mL for DPPH radical, superoxide anion radical and hydroxyl radical, respectively. The reductive power and scavenging ability to three free radicals of P. ostreatus polysaccharide sulfate were higher than those of polysaccharides, which suggested that P. ostreatus polysaccharide sulfate had a better antioxidant activity than that of polysaccharides.
Publication Date
1-28-2021
First Page
175
Last Page
179
DOI
10.13652/j.issn.1003-5788.2021.01.029
Recommended Citation
Ying, LIANG; Hong-mei, BI; Wen-feng, ZHENG; Hong-mei, BI; and Zhi-jiang, LI
(2021)
"Optimization of preparation technology and antioxidant activity of polysaccharide sulfate from Pleurotus ostreatus,"
Food and Machinery: Vol. 37:
Iss.
1, Article 29.
DOI: 10.13652/j.issn.1003-5788.2021.01.029
Available at:
https://www.ifoodmm.cn/journal/vol37/iss1/29
References
[1] 张叶, 刘瑞娟, 帖卫芳. 食用菌粗多糖降血糖的药理作用研究[J]. 中国食用菌, 2019, 38(10): 33-35.
[2] 崔成伟, 王翠翠, 龙瑞, 等. 平菇化学成分及药理活性研究进展[J]. 食品工业科技, 2019, 40(13): 304-309.
[3] 樊艺勇. 平菇多糖对运动员免疫功能的影响[J]. 中国食用菌, 2020, 39(5): 219-221.
[4] 杨雪纯, 于美丽, 高文卿. 多糖硫酸酯抗凝血涂层应用于高分子医用管路[J]. 天津医科大学学报, 2019, 25(2): 110-114.
[5] 张珏, 沈洁, 刘昱均, 等. 硫酸化发酵灵芝胞外多糖的组成与结构[J]. 食品生物与技术学报, 2015, 38(5): 547-553.
[6] JIA Xue-jing, MA Li-shuai, LI Peng, et al. Prospects of Poria cocos polysaccharides: Isolation process, structural features and bioactivities[J]. Trends in Food Science & Technology, 2016, 54: 52-62.
[7] 熊芳琪, 刘欣, 杨岚, 等. 羧甲基茯苓多糖体外抗氧化活性研究[J]. 中国食物与营养, 2017, 23(7): 39-41.
[8] 刘波, 袁利鹏, 熊波, 等. 多糖的硫酸酯化及其对结构和功能活性的影响研究进展[J]. 食品工业科技, 2015, 36(22): 372-375.
[9] 张忠, 刘艳芳, 周帅, 等. 金耳子实体多糖硫酸化修饰研究[J]. 食用菌学报, 2018, 25(1): 67-73.
[10] 汤凯, 周际松, 叶帆宇, 等. 硫酯化碱溶性茯苓多糖的抗氧化性分析[J]. 中国食品添加剂, 2020, 31(7): 21-26.
[11] 伯继芳, 马琦, 刘东茹, 等. 硫酯化杏鲍菇多糖的理化特性及体外生物活性研究[J]. 现代食品科技, 2019, 35(6): 102-109.
[12] 孟欣, 刘金锋. 羊肚菌多糖硫酸化衍生物的制备、结构分析及体外抗肿瘤活性[J]. 曲阜师范大学学报(自然科学版), 2020, 46(7): 992-995, 1 008.
[13] 李梦圆, 徐金龙, 刘咏. 黄山花菇多糖硫酸化修饰的优化及修饰产物抗肿瘤活性研究[J]. 合肥工业大学学报(自然科学版), 2020, 43(7): 21-26.
[14] WANG Zhi-jun, XIE Jian-hua, SHEN Ming-yue, et al. Sulfated modification of polysaccharides: Synthesis, characterization and bioactivities[J]. Trends in Food Science & Technology, 2018, 74: 147-157.
[15] 杨天笑, 王小莺, 万根, 等. 多糖的修饰及其抗凝血性研究进展[J]. 江西农业大学学报, 2013, 35(5): 1 108-1 113.
[16] 唐瑜婉, 张月巧, 李瑶, 等. 硫酸化羊肚菌多糖调控胆固醇代谢作用[J]. 食品科学, 2019, 40(21): 136-142.
[17] 李亚巍, 韩丽琴, 金瑛, 等. 灵芝多糖硫酸酯对大鼠脑缺血再灌注损伤的保护作用及其机制[J]. 吉林大学学报(医学版), 2017, 43(4): 679-684.
[18] 张春军, 董凯, 董琦, 等. 金福菇多糖及其衍生物的生物活性研究进展[J]. 中国药物经济学, 2018, 13(5): 125-128.
[19] LU Yu, WANG De-yun, HU Yuan-liang. Sulfated modification of epimedium polysaccharide and effects of the modifiers on cellular infectivity of IBDV[J]. Carbohydrate Polymers, 2008, 71(2): 180-186.
[20] 金迪, 梁英, 郑文凤, 等. 黄芩多糖体外抗氧化活性研究[J]. 中兽医医药杂志, 2012, 31(3): 33-37.
[21] 李公斌, 王振宇. 黑木耳多糖硫酸酯化制备工艺及红外光谱分析[J]. 东北林业大学学报, 2008, 36(12): 66-68.
[22] 申进文, 王瑞瑞, 许春平. 秀珍菇多糖的硫酸化及其生物活性研究[J]. 河南农业科学, 2014, 43(7): 102-106.
[23] LI Si-qian, SHAH Nagendra P. Sulphonated modification of polysaccharides from Pleurotus eryngii and Streptococcus thermophilus ASCC 1275 and antioxidant activities investigation using CCD and Caco-2 cell line models[J]. Food Chemistry, 2017, 225(15): 246-257.
[24] 胡俊飞, 张华, 曲航, 等. 硫酸化黑木耳多糖的辐射防护作用研究[J]. 食品研究与开发, 2017, 38(5): 6-10.
[25] YEUNG T, GILBERT G E, SHI J, et al. Membrane phosphatidyl serine regulates surface charge and protein localization[J]. Science, 2008, 319(11): 210-213.