•  
  •  
 

Abstract

The principles, advantages and disadvantages of the traditional and novel freezing and thawing methods were elaborated, and the research status of the applications of freezing and thawing technologies in aquatic products were also summarized. The development direction of freezing and thawing technologies was then prospected in this review.

Publication Date

1-28-2021

First Page

215

Last Page

221

DOI

10.13652/j.issn.1003-5788.2021.01.036

References

[1] 蔡路昀, 台瑞瑞, 曹爱玲, 等. 冷冻因素对水产品品质的影响及冷冻保鲜的研究进展[J]. 食品工业科技, 2018(20): 308-313.
[2] 丁海燕, 孙晓杰, 盛晓风, 等. 几种主要养殖淡水、海水经济鱼类肌肉营养组成及对比分析[J]. 食品科技, 2016(3): 150-155.
[3] ZHAN Xi-ming, SUN Da-wen, ZHU Zhi-wei, et al. Improving the quality and safety of frozen muscle foods by emerging freezing technologies: A review[J]. Crit Rev Food Sci Nutr, 2018, 58(17): 2 925-2 938.
[4] HANENIAN R, MITTAL G S. Effect of freezing and thawing on meat quality[J]. Journal of Food Agriculture & Environment, 2004, 2(3/4): 74-80.
[5] 文静, 梁显菊. 食品的冻结及解冻技术研究进展[J]. 肉类研究, 2008(7): 76-80.
[6] RUSSO KRAUSS I, MERLINO A, VERGARA A, et al. An overview of biological macromolecule crystallization[J]. International Journal of Molecular Sciences, 2013, 14(6): 11 643-11 691.
[7] KIANI H, SUN Da-wen. Water crystallization and its importance to freezing of foods: A review[J]. Trends in Food Science & Technology, 2011, 22(8): 407-426.
[8] WU Xiao-fei, ZHANG Min, ADHIKARI B, et al. Recent developments in novel freezing and thawing technologies applied to foods[J]. Crit Rev Food Sci Nutr, 2017, 57(17): 3 620-3 631.
[9] TRUONG B Q, BUCKOW R, STATHOPOULOS C E, et al. Advances in high-pressure processing of fish muscles[J]. Food Engineering Reviews, 2014, 7(2): 109-129.
[10] TIRONI V, DE LAMBALLERIE M, LE-BAIL A. Quality changes during the frozen storage of sea bass (Dicentrarchus labrax) muscle after pressure shift freezing and pressure assisted thawing[J]. Innovative Food Science & Emerging Technologies, 2010, 11(4): 565-573.
[11] SUN Qin-xiu, ZHAO Xin-xin, ZHANG Chao, et al. Ultrasound-assisted immersion freezing accelerates the freezing process and improves the quality of common carp (Cyprinus carpio) at different power levels[J]. LWT, 2019, 108: 106-112.
[12] LI Xiu-xia, SUN Pan, JIA Jing-ze, et al. Effect of low frequency ultrasound thawing method on the quality characteristics of Peru squid (Dosidicus gigas)[J]. Ciencia Y Tecnologia De Los Alimentos Internacional, 2019, 25(2): 171-181.
[13] LI Yu-lin, LI Feng, TANG Ju-ming, et al. Radio frequency tempering uniformity investigation of frozen beef with various shapes and sizes[J]. Innovative Food Science & Emerging Technologies, 2018, 48: 42-55.
[14] GAVAHIAN M, TIWARI B K, CHU Yan-hwa, et al. Food texture as affected by ohmic heating: Mechanisms involved, recent findings, benefits, and limitations[J]. Trends in Food Science & Technology, 2019, 86: 328-339.
[15] 余小领, 周光宏, 徐幸莲. 肉品冷冻工艺及冻结方法[J]. 食品工业科技, 2006(5): 199-202.
[16] 彭欢欢, 刘小莉, 张金振, 等. 不同冷冻方式对斑点叉尾鮰鱼片品质的影响[J]. 食品研究与开发, 2017(8): 177-182.
[17] 周俊鹏, 朱萌, 章蔚, 等. 不同冷冻方式对淡水鱼品质的影响[J]. 食品科学, 2019, 40(17): 247-254.
[18] 王雪松, 谢晶. 不同解冻方式对冷冻竹荚鱼品质的影响[J/OL]. 食品科学. (2020-10-10) [2020-12-12]. http://kns.cnki.net/kcms/detail/11.2206.TS.20201010.1451.002.html.
[19] 李晓燕, 陈杰, 樊博玮, 等. 浸渍式冷冻技术的研究进展[J]. 食品与发酵工业, 2020, 46(15): 307-312.
[20] VAN BUGGENHOUT S, GRAUWET T, VAN LOEY A, et al. Effect of high-pressure induced ice I/ice III-transition on the texture and microstructure of fresh and pretreated carrots and strawberries[J]. Food Research International, 2007, 40(10): 1 276-1 285.
[21] ANESE M, MANZOCCO L, PANOZZO A, et al. Effect of radiofrequency assisted freezing on meat microstructure and quality[J]. Food Research International, 2012, 46(1): 50-54.
[22] CHEVALIER D, LE BAIL A, GHOUL M. Freezing and ice crystals formed in a cylindrical food model:part II. Comparison between freezing at atmospheric pressure and pressure-shift freezing[J]. Food Eng, 2000, 46(4): 277-285.
[23] CHENG Li-na, SUN Da-wen, ZHU Zhi-wei, et al. Effects of high pressure freezing (HPF) on denaturation of natural actomyosin extracted from prawn (Metapenaeus ensis)[J]. Food Chem, 2017, 229: 252-259.
[24] 崔燕, 宣晓婷, 林旭东, 等. 超高压协同冷冻辅助脱壳对南美白对虾肌原纤维蛋白理化性质的影响[J]. 现代食品科技, 2019(2): 32-39.
[25] HURTADO J L, MONTERO GARCA P, BORDERAS A J. Extension of shelf life of chilled hake (Merluccius capensis) by high pressure[J]. Food Science & Technology International, 2000, 6(6): 243-249.
[26] 陶兵兵, 邹妍, 赵国华. 超声辅助冻结技术研究进展[J]. 食品科学, 2013(13): 370-373.
[27] SHI Zhi-jia, ZHONG Sai-yi, YAN Wen-jie, et al. The effects of ultrasonic treatment on the freezing rate, physicochemical quality, and microstructure of the back muscle of grass carp (Ctenopharyngodon idella)[J]. LWT, 2019, 111: 301-308.
[28] DELGADO A E, ZHENG Li-yun, SUN Da-wen. Influence of ultrasound on freezing rate of immersion-frozen apples[J]. Food & Bioprocess Technology, 2009, 2(3): 263-270.
[29] XU Bao-guo, ZHANG Min, BHANDARI B, et al. Effect of ultrasound-assisted freezing on the physico-chemical properties and volatile compounds of red radish[J]. Ultrason Sonochem, 2015, 27: 316-324.
[30] XANTHAKIS E, LE-BAIL A, RAMASWAMY H. Development of an innovative microwave assisted food freezing process[J]. Innovative Food Science & Emerging Technologies, 2014, 26: 176-181.
[31] 蔡迎红, 唐君言, 司春强, 等. 微波/射频辅助食品冻结的研究进展[J]. 冷藏技术, 2018(4): 7-12.
[32] JACKSON T H, UNGAN A, CRITSER J K, et al. Novel microwave technology for cryopreservation of biomaterials by suppression of apparent ice formation[J]. Cryobiology, 1997, 34(4): 370-372.
[33] XANTHAKIS E H J, ELIASSON L, JHA P K, et al. Evaluation of microwave assisted freezing (MAF) impact on meat and fish matrices[M]. Beijing: Chinese Association of Refrigeration, 2018: 176-181.
[34] ROSA A R D, BRESSAN F, LEONE F, et al. Radio frequency heating on food of animal origin: A review[J]. European Food Research and Technology, 2019, 245(9): 1 787-1 797.
[35] JHA P K, CHEVALLIER S, XANTHAKIS E, et al. Effect of innovative microwave assisted freezing (MAF) on the quality attributes of apples and potatoes[J]. Food Chem, 2020, 309: 125594.
[36] HAFEZPARAST-MOADAB N, HAMDAMI N, DALVI-ISFAHAN M, et al. Effects of radiofrequency-assisted freezing on microstructure and quality of rainbow trout (Oncorhynchus mykiss ) fillet[J]. Innovative Food Science & Emerging Technologies, 2018, 47: 81-87.
[37] DI ROSA A R, BRESSAN F, LEONE F, et al. Radio frequency heating on food of animal origin: A review[J]. European Food Research and Technology, 2019, 245(9): 1 787-1 797.
[38] FARAG K W, DUGGAN E, MORGAN D J, et al. A comparison of conventional and radio frequency defrosting of lean beef meats: Effects on water binding characteristics[J]. Meat Sci, 2009, 83(2): 278-284.
[39] LLAVE Y, TERADA Y, FUKUOKA M, et al. Dielectric properties of frozen tuna and analysis of defrosting using a radio-frequency system at low frequencies[J]. Journal of Food Engineering, 2014, 139: 1-9.
[40] ZHU Ya-li, LI Feng, TANG Ju-ming, et al. Effects of radio frequency, air and water tempering, and different end-point tempering temperatures on pork quality[J]. Journal of Food Process Engineering, 2019, 42(4): 1-8.
[41] XIA Xiu-fang, KONG Bao-hua, LIU Jing, et al. Influence of different thawing methods on physicochemical changes and protein oxidation of porcine longissimus muscle[J]. LWT-Food Science and Technology, 2012, 46(1): 280-286.
[42] 胡晓亮, 王易芬, 郑晓伟, 等. 水产品解冻技术研究进展[J]. 中国农学通报, 2015(29): 39-46.
[43] SRINIVASAN S, XIONG Y L, BLANCHARD S P, et al. Effects of freezing and thawing methods and storage time on physicochemical properties of freshwater prawns (Macrobrachium rosenbergii)[J]. Journal of Aquatic Food Product Technology, 1998, 7(2): 47-68.
[44] NGAPO T M, BABARE I H, REYNOLDS J. Freezing and thawing rate effects on drip loss from samples of pork[J]. Meat Science, 1999, 53(3): 149-158.
[45] 陈怡璇, 焦阳. 冻藏及解冻过程对水产品品质的影响[J]. 食品安全质量检测学报, 2019, 10(2): 36-41.
[46] 余文晖, 王金锋, 谢晶. 不同解冻方式对金枪鱼品质的影响[J]. 食品与发酵工业, 2019(12): 189-197.
[47] CHANDRAPALA J, OLIVER C M, KENTISH S, et al. Use of power ultrasound to improve extraction and modify phase transitions in food processing[J]. Food Reviews International, 2012, 29(1): 67-91.
[48] KISSAM A D, NELSON R W, NGAO J, et al. Water-thawing of fish using low frequency acoustics[J]. Journal of Food science, 1982, 47(1): 71-75.
[49] 谭明堂, 谢晶, 王金锋. 解冻方式对鱿鱼品质的影响[J]. 食品科学, 2019, 40(13): 94-101.
[50] CAI Lu-yun, ZHANG Wen-di, CAO Ai-ling, et al. Effects of ultrasonics combined with far infrared or microwave thawing on protein denaturation and moisture migration of Sciaenops ocellatus (red drum)[J]. Ultrason Sonochem, 2019, 55: 96-104.
[51] LI Bing, SUN Wen-da. Effect of power ultrasound on freezing rate during immersion freezing of potatoes[J]. Journal of Food Engineering, 2002, 55(3): 277-282.
[52] 唐梦, 岑剑伟, 李来好, 等. 高压静电场解冻技术在食品中的研究进展[J]. 食品工业科技, 2016(10): 373-376.
[53] MOUSAKHANI-GANJEH A, HAMDAMI N, SOLTANIZADEH N. Effect of high voltage electrostatic field thawing on the lipid oxidation of frozen tuna fish (Thunnus albacares)[J]. Innovative Food Science & Emerging Technologies, 2016, 36: 42-47.
[54] LI Da-peng, JIA Shi-liang, ZHANG Long-ting, et al. Post-thawing quality changes of common carp (Cyprinus carpio) cubes treated by high voltage electrostatic field (HVEF) during chilled storage[J]. Innovative Food Science & Emerging Technologies, 2017, 42: 25-32.
[55] 唐梦, 岑剑伟, 李来好, 等. 高压静电场解冻对冻罗非鱼片品质的影响[J]. 食品工业科技, 2017(13): 1-6.
[56] ICIER F, IZZETOGLU G T, BOZKURT H, et al. Effects of ohmic thawing on histological and textural properties of beef cuts[J]. Journal of Food Engineering, 2010, 99(3): 360-365.
[57] YELIAN MIAO J C A N. Studies on the ohmic thawing of frozen surimi[J]. Food Science and Technology, 2007, 13(4): 296-300.
[58] LIU Lei, LLAVE Y, JIN Yin-zhe, et al. Electrical conductivity and ohmic thawing of frozen tuna at high frequencies[J]. Journal of Food Engineering, 2017, 197: 68-77.
[59] 彭泽宇, 朱明明, 孙红东, 等. 肉品新型解冻技术及其对蛋白特性影响的研究进展[J]. 食品科学, 2019, 41(19): 303-310.
[60] BAYGAR T, ALPARSLAN Y. Effects of multiple freezing (-18±2 ℃) and microwave thawing cycles on the quality changes of sea bass (Dicentrarchus labrax)[J]. J Food Sci Technol, 2015, 52(6): 3 458-3 465.
[61] SOSA-MORALES M E, VALERIO-JUNCO L, LPEZ-MALO A, et al. Dielectric properties of foods: Reported data in the 21st Century and their potential applications[J]. LWT-Food Science and Technology, 2010, 43(8): 1 169-1 179.
[62] CHIZOBA E, FLORA G, SUN Da-wen, Zhang Han, et al. Microwave-assisted food processing technologies for enhancing product quality and process efficiency: A review of recent developments[J]. Trends in Food Science & Technology, 2017(67): 58-69.
[63] 宦海珍, 朱文慧, 步营, 等. 微波解冻对秘鲁鱿鱼肌肉品质与蛋白质氧化程度的影响[J]. 食品工业科技, 2018(5): 30-35, 40.
[64] ZHANG Rou-jia, WANG Yi-fen, WANG Xi-chang, et al. Study of heating characteristics for a continuous 915 MHz pilot scale microwave thawing system[J]. Food Control, 2019, 104: 105-114.
[65] 王亚盛. 冷冻水产品复合相介电特性与射频解冻研究[J]. 食品科学, 2007(7): 501-504.
[66] KORAY PALAZOGLU T, MIRAN W. Experimental comparison of microwave and radio frequency tempering of frozen block of shrimp[J]. Innovative Food Science & Emerging Technologies, 2017, 41: 292-300.
[67] BEDANE T F, CHEN Long, MARRA F, et al. Experimental study of radio frequency (RF) thawing of foods with movement on conveyor belt[J]. Journal of Food Engineering, 2017, 201: 17-25.
[68] LLAVE Y, LIU S, FUKUOKA M, et al. Computer simulation of radiofrequency defrosting of frozen foods[J]. Journal of Food Engineering, 2015, 152: 32-42.
[69] 何佳玲, 陈璐, 张汝怡, 等. 不同形状尺寸冷冻牛肉的射频解冻均匀性探究[J]. 食品与机械, 2020, 36(2): 122-128.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.