Abstract
Objective: The effects of microwave intermittent drying on water dynamics and microstructure of persimmon slices were studied. Methods: Different microwave power (280, 350, 420, 490 and 560 W) were selected to dry the persimmon slices intermittently. The moisture dynamics and migration of persimmon slices during drying were monitored, and the color, texture and microstructure of persimmon slices were analyzed. Results: There were three obvious water peaks corresponding to bound water (T21), immobilized water T22) and free water (T23) in fresh persimmon. With the increase of drying time, the transverse relaxation time of immobilized water and free water decreased significantly. The values of L*, a* and b*decreased significantly with the increase of microwave power. The ΔE, hardness, elasticity and chewiness increased with the increase of microwave power. With the increase of microwave power, the shrinkage and collapse of persimmon slices become more and more obvious. Conclusion: Lower microwave power can get better quality dried persimmon products.
Publication Date
10-28-2021
First Page
1
Last Page
5,78
DOI
10.13652/j.issn.1003-5788.2021.10.001
Recommended Citation
Yan-ting, QIN; Zhen-hua, DUAN; Zhen-zhen, WEI; Si-yun, ZHOU; and Xiao-xian, TANG
(2021)
"Effects of microwave power on moisture migration and quality of persimmon slices during microwave intermittent drying,"
Food and Machinery: Vol. 37:
Iss.
10, Article 1.
DOI: 10.13652/j.issn.1003-5788.2021.10.001
Available at:
https://www.ifoodmm.cn/journal/vol37/iss10/1
References
[1] 覃焱婷, 段振华, 韦珍珍, 等. 柿子干燥技术的研究进展[J]. 食品科技, 2020, 45(12): 53-58.
[2] CHONG C H, FIGIEL A, LAW C L, et al. Combined drying of apple cubes by using of heat pump, vacuum-microwave, and intermittent techniques[J]. Food and Bioprocess Technology, 2014, 7(4): 975-989.
[3] 盘喻颜, 段振华, 刘艳, 等. 火龙果片微波间歇干燥特性及其动力学研究[J]. 食品与机械, 2019, 35(3): 195-201.
[4] 唐小闲, 汤泉, 张巧, 等. 马蹄淀粉微波间歇干燥工艺研究[J]. 食品与机械, 2018, 34(4): 211-215.
[5] CHENG Sha-sha, LI Ran-ran, YANG Hui-min, et al. Water status and distribution in shiitake mushroom and the effects of drying on water dynamics assessed by LF-NMR and MRI[J]. Drying Technology, 2020, 38(8): 1 001-1 010.
[6] 程沙沙, 唐英强, 章坦, 等. LF-NMR和MRI对干制虾仁复水过程水分状态及品质变化的研究[J]. 分析测试学报, 2017, 36(10): 1 224-1 229.
[7] CHENG Sha-sha, WANG Xiao-hui, YANG Hui-min, et al. Characterization of moisture migration of beef during refrigeration storage by low-field NMR and its relationship to beef quality[J]. Journal of the Science of Food and Agriculture, 2020, 100(5): 1 940-1 948.
[8] 张骏龙, 周纷, 邵俊花, 等. 低场核磁共振技术研究淀粉添加量对肉糜保水性和质构特性的影响[J]. 食品工业科技, 2016, 37(21): 66-69, 75.
[9] 保定茂源果品股份有限公司. 一种柿子的深加工方法: CN201811354433.1[P]. 2019-01-08.
[10] JIANG Hao, ZHANG Min, MUJUMDAR A S. Microwave freeze-drying Characteristics of banana crisps[J]. Drying Technology, 2010, 28(12): 1 377-1 384.
[11] 王宸之, 邓自高, 李琳, 等. 热风和微波干燥对龙眼品质的影响[J]. 食品与生物技术学报, 2018, 37(4): 429-436.
[12] KAMAL T, SONG Yu-kun, ZHANG Tan, et al. Effect of hot-air oven dehydration process on water dynamics and microstructure of apple (Fuji) cultivar slices assessed by LF-NMR and MRI[J]. Drying Technology, 2019, 37(15): 1 974-1 987.
[13] XIN Ying, ZHANG Min, BENU A. Effect of trehalose and ultrasound-assisted osmotic dehydration on the state of water and glass transition temperature of broccoli (Brassica oleracea L. var. botrytis L.)[J]. Journal of Food Engineering, 2013, 119(3): 640-647.
[14] 曾雅, 刘云宏, 张嘉怡, 等. 远红外辐射温度对猕猴桃干燥水分迁移的影响[J]. 食品与机械, 2019, 35(8): 143-147.
[15] QIAO Y, GALVOSAS P, CALLAGHAN P T. Diffusion correlation NMR spectroscopic study of anisotropic diffusion of water in plant tissues[J]. Biophysical Journal, 2005, 89(4): 2 899-2 905.
[16] XU Fang-fang, JIN Xin, ZHANG Lu, et al. Investigation on water status and distribution in broccoli and the effects of drying on water status using NMR and MRI methods[J]. Food Research International, 2017, 96: 191-197.
[17] 薛广, 李敏, 关志强, 等. 基于低场核磁共振的罗非鱼片微波真空干燥过程水分变化规律[J]. 广东海洋大学学报, 2020, 40(6): 123-129.
[18] 张黎骅, 武莉峰, 党鑫凯, 等. 鲜切高山野山药片微波间歇干燥特性研究[J]. 食品与机械, 2017, 33(1): 39-44.
[19] 龙门, 张文豪, 郑素玲, 等. 基于低场核磁共振技术的咸鸭蛋腌制过程水分及质构特性变化[J]. 食品与机械, 2019, 35(2):21-26.
[20] 李定金, 段振华, 刘艳, 等. 利用低场核磁共振技术研究调味山药片真空微波干燥过程中水分的变化规律[J]. 食品科学, 2019, 40(5): 116-123.
[21] 蒋汉均, 刘桂秀. 月柿丰产栽培技术与加工[M]. 广西: 广西师范大学出版社, 1995: 17.
[22] ELEN S. Effect of microwave drying on the drying characteristics, color, microstructure, and thermal properties of trabzon persimmon[J]. Foods, 2019, 8(2): 1-19.
[23] 李树君. 农产品微波组合干燥技术[M]. 北京: 中国科学技术出版社, 2015: 30-60.
[24] 李永红, 常瑞丰, 张立莎, 等. 物性分析仪TPA测定鲜食桃质构条件的优化[J]. 河北农业科学, 2016, 20(3): 95-100.
[25] 蔡洁, 李汴生, 阮征. 远红外辅助热风干燥对秋刀鱼片干燥特性及品质的影响[J]. 食品工业科技, 2020, 41(21): 58-66.
[26] 马超, 赵治兵, 吴文能, 等. 不同浓度臭氧处理对采后猕猴桃货架期间质构性能的影响[J]. 保鲜与加工, 2018, 18(1): 1-7.
[27] 贾暑花. 基于微波真空方法的蓝靛果脆片膨化工艺研究[D]. 黑龙江: 东北农业大学, 2009: 3-5.