•  
  •  
 

Abstract

Objective: The sugar content in apple directly affects its taste. The near infrared spectrum data of apples were collected in the wavelength range of 900~1 700 nm to detect the sugar content nondestructively in conjunction with the chemometrics method. Methods: Firstly, the spectral data were corrected by baseline, scattered, smoothed, and scaled in turn, and then the best preprocessing method was selected by minimizing the root mean square error of cross-validation. Secondly, 7 and 52 feature variables were selected by successive projection algorithm (SPA) and competitive adaptive reweighted sampling (CARS) respectively. Finally, the linear PLS model and nonlinear ELM model were established with the feature variables selected by SPA method, CARS method and their combination as input variables respectively. Results: The results showed that the modeling effect of the combined feature variables was better than that of the single method, and the nonlinear models were better than that of the linear models. Conclusion: ELM model established by using combined characteristic variables has the best prediction effect, with RMSEC=0.710 1, R2c=0.883 8, RMSEP=0.637 5, R2p=0.894 5, which can provide theoretical reference for the development of apple hyperspectral detection device.

Publication Date

10-28-2021

First Page

112

Last Page

118

DOI

10.13652/j.issn.1003-5788.2021.10.020

References

[1] POURDARBANI Razieh, SABZI Sajad, JAROLMASJED Sanaz, et al. Determination of the most effective wavelengths for prediction of fuji apple starch and total solublesolids properties[J]. Applied Sciences, 2020, 10(22): 8 145.
[2] RENE Mogollon Miguel, CONTRERAS Carolina, DE FREITAS Sergio Tonetto, et al. NIR spectral models for early detection of bitter pit in asymptomatic 'Fuji' apples[J]. Scientia Horticulturae, 2021, 280: 109945.
[3] 郭成, 马月, 梁梦醒, 等. 基于近红外光谱结合波长优选检测单颗葡萄的SSC含量[J]. 食品与机械, 2016, 32(9): 39-43.
[4] 张昭, 王鹏, 姚志凤, 等. 基于多光谱荧光成像技术和SVM的葡萄霜霉病早期检测研究[J]. 光谱学与光谱分析, 2021, 41(3): 828-834.
[5] 刘燕德, 张雨, 姜小刚, 等. 不同贮藏期水蜜桃硬度及糖度的检测研究[J]. 光谱学与光谱分析, 2021, 41(1): 243-249.
[6] 高升, 王巧华, 付丹丹, 等. 红提糖度和硬度的高光谱成像无损检测[J]. 光学学报, 2019, 39(10): 355-364.
[7] FANG Yi-ming, YANG Fan, ZHOU Zhu, et al. Hyperspectral wavelength selection and integration for bruise detection of korla pears[J]. Journal of Spectroscopy, 2019, 2 019: 1-8.
[8] 黎新荣. 滑皮金桔糖度的近红外光谱无损检测技术[J]. 南方农业学报, 2019, 50(4): 838-843.
[9] 第五鹏瑶, 卞希慧, 王姿方, 等. 光谱预处理方法选择研究[J]. 光谱学与光谱分析, 2019, 39(9): 2 800-2 806.
[10] 王亚轩, 谭峰, 辛元明, 等. 大米拉曼光谱不同预处理方法的相近产地鉴别研究[J]. 光谱学与光谱分析, 2021, 41(2): 565-571.
[11] DONG Jin-lei, GUO Wen-chuan,WANG Zhuan-wei, et al. Nondestructive determination of soluble solids content of 'fuji' apples produced in different areas and bagged with different materials during ripening[J]. Food Analytical Methods, 2016, 9(5): 1 087-1 095.
[12] WANG Fan, ZHAO Chun-jiang, YANG Gui-jun. Development of a non-destructive method for detection of the juiciness of pear via VIS/NIR spectroscopy combined with chemometric methods[J]. Foods, 2020, 9(12): 1 778.
[13] 张娟娟, 席磊, 杨向阳, 等. 砂姜黑土有机质含量高光谱估测模型构建[J]. 农业工程学报, 2020, 36(17): 135-141.
[14] 白铁成, 王涛, 陈佑启, 等. 南疆沙尘区骏枣叶片水分含量检测的近红外光谱预处理方法对比(英文)[J]. 光谱学与光谱分析, 2019, 39(4): 1 323-1 328.
[15] 陈杰, 姚娜, 吕海芳, 等. 近红外光谱在小尾寒羊羊肉水分预测中的应用[J]. 食品科技, 2021, 46(1): 134-138.
[16] 宋相中, 唐果, 张录达, 等. 近红外光谱分析中的变量选择算法研究进展[J]. 光谱学与光谱分析, 2017, 37(4): 1 048-1 052.
[17] LI Ying, GUO Ya-jing, LIU Chang, et al. SPA combined with swarm intelligence optimization algorithms for wavelength variable selection to rapidly discriminate the adulteration of apple juice[J]. Food Analytical Methods, 2017, 10(6): 1 965-1 971.
[18] WU Yuan, LI Ling-ling, LIU Li, et al. Nondestructive measurement of internal quality attributes of apple fruit by using NIR spectroscopy[J]. Multimedia Tools and Applications, 2019, 78(4): 4 179-4 195.
[19] 陈媛媛, 王志斌, 王召巴. 基于无信息变量消除法与岭极限学习机的新型变量选择方法: 以CO气体浓度反演为例(英文)[J]. 光谱学与光谱分析, 2017, 37(1): 299-305.
[20] 孙晶京, 杨武德, 冯美臣, 等. 基于随机蛙跳和支持向量机的冬小麦叶面积指数估算[J]. 山西农业大学学报(自然科学版), 2020, 40(5): 120-128.
[21] 成甜甜, 王克俭, 韩宪忠, 等. 基于PSO-LSSVM和特征波长提取的羊肉掺假检测方法[J]. 食品与机械, 2020, 36(11): 46-50.
[22] 程介虹, 陈争光. 改进的联合区间随机蛙跳算法的近红外光谱波长选择[J]. 光谱学与光谱分析, 2020, 40(11): 3 451-3 456.
[23] 袁凯, 张志勇, 席前, 等. 3步混合变量选择策略在鸡肉近红外水分检测中的应用[J]. 食品与机械, 2020, 36(9): 72-76, 81.
[24] 方明明, 刘静. 基于回归卷积神经网络的近红外光谱苹果脆片品质评价方法研究[J]. 食品科技, 2020, 45(7): 303-308, 316.
[25] 李盛芳, 贾敏智, 董大明. 随机森林算法的水果糖分近红外光谱测量[J]. 光谱学与光谱分析, 2018, 38(6): 1 766-1 771.
[26] 徐焕良, 周冰清, 王浩云, 等. 基于模型迁移的苹果光学特征参数反演[J]. 农业机械学报, 2020, 51(11): 264-271.
[27] 张立欣, 李文华, 王顺, 等. 基ELM算法的羊肉水分含量的快速无损检测[J]. 数学的实践与认识, 2020, 50(8): 94-102.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.