Abstract
Objective: This study focuses on designing a more accurate identification model of lettuce storage time. Methods: The near-infrared spectral data from extraction feature of the preprocessed lettuce was obtained by principal component analysis (PCA), discriminant principal component analysis (DPCA) and fuzzy discriminant principal component analysis (FDPCA) respectively. An algorithm of higher accuracy in storage time discrimination was explored, and then a lettuce storage time discriminant model based on FDPCA was established. Results: The identification accuracy raised dramatically after FDPCA was used to extract feature. When employing PCA, DPCA and FDPCA algorithms, the highest accuracies achieved were 46.67%, 86.67% and 93.33% respectively. Conclusion: This discrimination model of employing near-infrared spectroscopy and FDPCA was characterized by high accuracy and superiority.
Publication Date
10-28-2021
First Page
119
Last Page
123
DOI
10.13652/j.issn.1003-5788.2021.10.021
Recommended Citation
Xiao-lei, HOU; Xiao-hong, WU; Bin, WU; Jia-qi, SHEN; and Xin, WANG
(2021)
"Discrimination of lettuce storage time based on fuzzy discriminant principal component analysis,"
Food and Machinery: Vol. 37:
Iss.
10, Article 21.
DOI: 10.13652/j.issn.1003-5788.2021.10.021
Available at:
https://www.ifoodmm.cn/journal/vol37/iss10/21
References
[1] 邓梦雅, 朱丽, 吴东慧, 等. 蔬菜中矿物质含量测定、营养评价及风险评估[J]. 食品研究与开发, 2018, 39(9): 97-102.
[2] 柳青, 黄广学, 刘继伟, 等. 六种特菜的营养成分分析与品质评价[J]. 农产品加工, 2019(16): 41-44, 48.
[4] 吴超群, 李希, 路甲鹏, 等. 中国居民心血管疾病危险因素分布报告[J]. 中国循环杂志, 2021, 36(1): 4-13.
[5] 徐晓霞, 陈安均, 桑伟娜, 等. 不同温度贮藏鲜切生菜腐败细菌的分离及鉴定[J]. 食品与发酵工业, 2016, 42(1): 53-58.
[6] 刘峥, 殷勇. 基于高光谱技术的香肠亚硝酸盐快速检测方法[J]. 食品与机械, 2019, 35(5): 78-82.
[7] 胡亚南, 李鑫, 霍蛟飞, 等. 基于模糊分数阶PID的食品包装机张力控制系统设计[J]. 食品与机械, 2020, 36(12): 79-84.
[8] 王敏, 高凡, 张钧煜, 等. 基于智能电子鼻的冰箱冷藏食品新鲜度原位检测技术[J]. 传感技术学报, 2019, 32(2): 161-166.
[9] 张桂君, 周茜, 王清, 等. 生菜采后保鲜技术研究现状[J]. 保鲜与加工, 2021, 21(1): 135-140.
[10] 祝红, 郭宇波, 易翠平, 等. 基于电子鼻的鲜湿米粉新鲜度检测[J]. 食品与机械, 2018, 34(7): 65-68.
[11] 汪天宇, 曹成茂, 谢承健, 等. 基于模糊聚类算法的山核桃壳仁分选系统设计[J]. 食品与机械, 2018, 34(6): 110-114, 157.
[12] 武斌, 周树斌, 武小红, 等. Gath-Geva联合模糊聚类的生菜近红外光谱聚类分析[J]. 光谱学与光谱分析, 2021, 41(3): 932-935.
[13] 赵科文, 陈实, 蒋浩, 等. 基于近红外光谱技术的烟丝掺配均匀度测定[J]. 食品与机械, 2020, 36(11): 183-188.
[14] 曹念念, 刘强, 彭菁, 等. 基于近红外光谱技术的黄桃脆片可溶性固形物和硬度定量检测方法[J]. 食品与机械, 2021, 37(3): 51-57.
[15] 丁倩, 石玉, 甄润英. 不同授粉品种绿宝苹果主要营养品质及主成分分析[J]. 食品与机械, 2018, 34(4): 54-57.