Abstract
Objective: The extraction process optimization study of dihydromyricetin in the combination of medicine and food homologous materials (Ampelopsis grossedentata 30%, mulberry leaf 15%, chrysanthemum 15%, reed root 10%, malt 10%, licorice 10% and light bamboo leaf 10%) was carried out to optimize its extraction process, in order to provide a scientific and theoretical reference for the development of medicine and food homologous materials and the production of extract powder. Methods: The times extractions was firstly investigated, and then the soaking time, water addition and extraction time were used as influencing factors to optimize the conditions for the extraction of dihydromyricetin from the combination of medicinal and food ingredients by aqueous extraction using L9 (34) orthogonal table based on a single-factor test. Results: The amount of water added had a significant effect (P<0.05) on the extraction of dihydromyricetin and the yield of infusion in the combination of medicinal and food ingredients. Considering the cost, timeliness and stability of the production, the optimal conditions for the water extraction process were 0.5 h of soaking with water with twice extractions, and the first extraction with the solution including 10 times water of its mass for 1.5 h and the second with 8 times water of its mass for 1.0 h. Under the control of these optimal conditions, the amount of dihydromyricetin extracted from 65 g of the combination of medicine and food homologous materials was 3 761.14 mg, and the yield of infusion was 31.42%. Conclusion: The hot water reflux extraction method can be used as an extraction method for the combination of medicinal and food homologous materials. This method is simple, feasible, efficient, and accurate. It can be used to optimize the extraction process of dihydromyricetin in the combination of medicinal and edible materials.
Publication Date
10-28-2021
First Page
138
Last Page
143,175
DOI
10.13652/j.issn.1003-5788.2021.10.024
Recommended Citation
Rong-bin, ZHANG; Wen-ming, GAO; Zhi-yong, DAI; Meng-yi, LI; Zhen-gui, CHEN; and Guo-pu, REN
(2021)
"Study on the extraction process of dihydromyricetin from the combination of medicine and food homologous materials,"
Food and Machinery: Vol. 37:
Iss.
10, Article 24.
DOI: 10.13652/j.issn.1003-5788.2021.10.024
Available at:
https://www.ifoodmm.cn/journal/vol37/iss10/24
References
[1] HOU Xiao-long, TONG Qing, WANG Wen-qing, et al. Suppression of inflammolatory responses by dihydromyricetin, a flavonoid from ampelopsis grossedentata, via inhibiting the activation of NF-κB and MAPK signaling pathways[J]. J Nat Prod, 2015, 78(7): 1 689-1 696.
[2] 王丹丹, 方建国, 施春阳, 等. 加工及干燥对藤茶品质成分的影响[J]. 时珍国医国药, 2016, 27(12): 2 899-2 902.
[3] GAO Qing-ping, MA Ru-yi, CHEN Lin. Antioxidant profiling of vine tea (Ampelopsis grossedentata): Off-line coupling heart-cutting HSCCC with HPLC-DAD-QTOF-MS/MS[J]. Food Chemistry, 2017, 225: 55-61.
[4] 王亭, 于华忠, 温晓, 等. 响应面法优化土家族民间药藤茶饮料调配工艺研究[J]. 中国民族医药杂志, 2017, 23(3): 54-59.
[5] HASSAN Faizul, ARSHAD Muhammad Adeel, LI Meng-wei, et al. Potential of mulberry leaf biomass and its flavonoids to improve production and health in ruminants: mechanistic insights and prospects[J]. Animals, 2020, 10(11): 2 076-2 082.
[6] 杨继华, 曹俊明, 陈冰, 等. 桑叶黄酮类化合物提取纯化、生物学功能研究进展[J]. 广东畜牧兽医科技, 2018, 43(3): 9-15.
[7] LIN Long-ze, HARNLY James M. Identification of the phenolic components of chrysanthemum flower (Chrysanthemum morifolium Ramat)[J]. Food Chemistry, 2009, 120(1): 319-326.
[8] 周衡朴, 任敏霞, 管家齐, 等. 菊花化学成分、药理作用的研究进展及质量标志物预测分析[J]. 中草药, 2019, 50(19): 4 785-4 795.
[9] 孙淑玲. 中药芦根的药理作用及临床应用[J]. 中西医结合心血管病电子杂志, 2016, 4(36): 165.
[10] 刘足桂, 梁生林. 芦根水煎剂对小鼠的抗炎作用初探[J]. 中国医药指南, 2014, 12(34): 61-62.
[11] 辛卫云, 白明, 苗明三. 麦芽的现代研究[J]. 中医学报, 2017, 32(4): 613-615.
[12] 李丽姣, 陈永刚, 张柯达, 等. 麦芽生物碱物质提取工艺优化及不同产地含量比较[J]. 广东药学院学报, 2016, 32(5): 572-576.
[13] 李想, 李冀. 甘草提取物活性成分药理作用研究进展[J]. 江苏中医药, 2019, 51(5): 81-86.
[14] 申美伦, 梁业飞, 刘广欣, 等. 甘草黄酮提取分离方法的研究进展[J]. 中成药, 2021, 43(1): 154-159.
[15] 赵青群, 付辉政, 周志强, 等. 竹类植物化学成分及药理活性研究进展[J]. 药品评价, 2021, 18(1): 7-13.
[16] 黄皓. 微波加热法用于竹叶水提取总黄酮的应用研究[J]. 云南农业, 2020(2): 74-77.
[17] 张晓南, 朱鸿维, 赵善舶, 等. 响应面优化超声辅助法提取拐枣种子中二氢杨梅素的工艺[J]. 植物研究, 2020, 40(5): 775-781.
[18] 林艳, 肖若媚, 林凤瑜. 索氏桑叶黄酮类成分的多指标均匀设计提取工艺分析[J]. 赣南医学院学报, 2014, 34(3): 354-356.
[19] 刘畅, 邓薇, 刘小英, 等. 藤茶生物活性成分及其制备工艺研究进展[J]. 食品工业, 2015, 36(4): 233-237.
[20] 涂招秀, 熊伟, 胡居吾, 等. 藤茶中二氢杨梅素的提取纯化工艺研究[J]. 江西食品工业, 2011(2): 33-36.
[21] 李烨, 朱志强, 集贤, 等. 响应面优化超声波法提取竹叶黄酮[J]. 西华大学学报(自然科学版), 2019, 38(5): 78-83.
[22] 郭巍. 藤茶二氢杨梅素提取纯化工艺及性质研究[D]. 武汉: 湖北工业大学, 2016: 31-39.
[23] 熊伟, 王慧宾, 李雄辉, 等. 热水浸提法同步提取藤茶中二氢杨梅素和多糖的工艺研究[J]. 生物化工, 2015(1): 5-6, 11.
[24] 李冬梅, 郑耿扬, 梁鼎, 等. 藤茶二氢杨梅素口服液制备工艺优化[J]. 农业工程, 2020, 10(6): 66-70.
[25] 张弘. 银杏叶黄酮类活性物质的提取条件研究[J]. 食品研究与开发, 2014, 35(5): 49-50.
[26] 郑成, 高晓明, 杨玲, 等. 藤茶中二氢杨梅素的微波萃取[J]. 广州化工, 2005(2): 12-15.
[27] 刘瑞连, 严建业, 李顺祥, 等. 正交试验法优选冰荷洗剂水提工艺条件[J]. 中国中医药信息杂志, 2012, 19(3): 56-58.
[28] 郑琳, 高士伟, 刘盼盼, 等. 藤茶中二氢杨梅素的研究[J]. 湖北农业科学, 2020, 59(24): 133-134, 140.