Abstract
Objective: In order to develop and utilize the resource utilization rate of cellulase producing strains. Methods: A Bacillus subtilis XWS-A with complete cellulase production system and high activity was used as the starting strain to make bacterial Fuqu. Box-Behnken response surface design was used to optimize the technology of Fuqu, and its enzyme production characteristics were explored. Results: The optimum conditions of Fuqu making were fixed inoculum amount of 7.5%, culture temperature of 46 ℃, water content of 46%, Under these conditions, Bacillus subtilis XWS-A was effectively proliferated, and the biomass reached (4.5±0.3)×1011 CFU/g; Fuqu had three kinds of cellulase activities, and the best conditions for determination were endonuclease. The activity of endo-β-glucanase was (2 510±70) U/g. The activity of exo-β-glucanase was (15±2) U/g. The activity of β-glucosidase was (30±3) U/g. Conclusion: By making Fuqu, XWS-A can effectively proliferate and improve the enzyme production of the strain, and the Fuqu can maintain the enzyme activity of the strain. It provides an effective way for the efficient utilization of cellulase producing strains and the development and utilization of cellulose resources.
Publication Date
10-28-2021
First Page
12
Last Page
17
DOI
10.13652/j.issn.1003-5788.2021.10.003
Recommended Citation
Zi-qiang, ZHENG; Chun-hui, WEI; Jie, DENG; Zhi-guo, HUANG; Ji-yu, ZHONG; and Zhi-qiang, REN
(2021)
"Study on the production of Fuqu and the characteristics of enzyme about a cellulase producing Bacillus subtilis,"
Food and Machinery: Vol. 37:
Iss.
10, Article 3.
DOI: 10.13652/j.issn.1003-5788.2021.10.003
Available at:
https://www.ifoodmm.cn/journal/vol37/iss10/3
References
[1] 陈嘉川, 颜家强, 张凯, 等. 微晶纤维素的制备及其在功能材料领域中的应用进展[J]. 中国造纸, 2021, 40(3): 63-70.
[2] 李鹏, 陈秀珍, 庄文颖. 高产纤维素酶的拟康宁木霉菌株8985固态发酵条件优化[J]. 菌物学报, 2021, 40(4): 743-758.
[3] KARIMI Avargani-mi. The promiscuous potential of cellulase in degradation of polylactic acid and its jute composite[J]. Chemosphere, 2021(1 526): 130443.
[4] 宫秀杰, 钱春荣, 于洋, 等. 近年纤维素降解菌株筛选研究进展[J]. 纤维素科学与技术, 2021, 29(2): 68-77.
[5] 杨伟平, 郭雷锋, 赫倩. 纤维素分解菌的分离筛选及特性研究[J]. 中国畜牧杂志, 2019, 55(4): 110-114.
[6] 黄玉兰, 李征, 刘晓宁, 等. 一株耐低温纤维素酶高产菌株的筛选、鉴定和产酶的初步试验[J]. 微生物学通报, 2010, 37(5): 637-644.
[7] 胡丽娟, 薛高尚, 卢向阳, 等. 响应面法优化芽孢杆菌25-2产纤维素酶发酵条件[J]. 酿酒科技, 2012(4): 21-26.
[8] 李永博, 黄治国, 赵阳, 等. 窖泥中产纤维素酶菌株的筛选鉴定及产酶特性的研究[J]. 食品科技, 2018, 43(2): 9-14.
[9] 赵国俊, 范放, 傅晓琴. 电阻抗法检测食品中的细菌总数与平板计数法的比较[J]. 广州食品工业科技, 1998(2): 63-65.
[10] 王晓勇, 荆旭, 赵恒山, 等. 应用响应面法对产糖化酶菌株M1制曲工艺的优化研究[J]. 酿酒, 2019, 46(5): 79-83.
[11] 张旭姣, 闫裕峰, 周景丽, 等. 强化多微麸曲制备工艺优化及其在陈醋酒精发酵阶段的应用[J]. 中国酿造, 2020, 39(2): 129-134.
[12] ANWAR N, HASSAN N, YUSOF N M, et al. High-titer bio-succinic acid production from sequential alkalic and metal salt pretreated empty fruit bunch via simultaneous saccharification and fermentation[J]. Industrial Crops and Products, 2021, 166(2): 113478.
[13] 孙会刚, 徐慧敏, 黄天姿, 等. 产酸性纤维素酶细菌的筛选鉴定及其酶学性质[J]. 食品科技, 2021, 46(7): 55-59.
[14] 郭燕, 钟迟迪, 董晓山, 等. 中高温大曲中酵母菌的分离及其在小曲酒中发酵性能初探[J]. 食品与发酵工业, 2020, 46(8): 78-84.
[15] 武顺, 王德良, 闫寅卓. 产吡嗪类细菌的麸曲制作工艺优化[J]. 中国酿造, 2016, 35(2): 13-17.
[16] VARALAKSHMI K N, KUMUDINI B S, NANDINI B N, et al. Production and characterization of alpha-amylase fromAspergillus niger JGI 24 isolated in Bangalore[J]. Polish J Microbiol, 2009, 58(1): 29-36.
[17] 潘婉舒, 彭杨, 杜大钊, 等. 醋酸菌麸曲制备工艺的优化[J]. 食品与机械, 2018, 34(10): 206-211.