Abstract
In the process of squid processing, a large number of by-products like viscera and cartilage are produced, which are rich in fat, protein and other nutrients. The research status and comprehensive utilization of oil from squid processing by-products were summarized in this review, from four aspects including biological activities, extraction, refining and microcapsulation. The development trend and research direction in the future were also prospected. In order to provide a theoretical reference for the further comprehensive development and utilization of oil in squid processing by-products and the rapid development of squid deep processing industry.
Publication Date
10-28-2021
First Page
215
Last Page
221
DOI
10.13652/j.issn.1003-5788.2021.10.038
Recommended Citation
Li-zi, YE; Jia, LI; Ying-jie, PAN; and Ying-qi, TANG
(2021)
"The progress in comprehensive utilization of oil in by-products of squid processing,"
Food and Machinery: Vol. 37:
Iss.
10, Article 38.
DOI: 10.13652/j.issn.1003-5788.2021.10.038
Available at:
https://www.ifoodmm.cn/journal/vol37/iss10/38
References
[1] 刘倩茹, 柏圣达, 赵国雨, 等. 北太平洋鱿鱼缠卵腺抗氧化酶解寡肽的制备[J]. 湖北农业科学, 2018, 57(13): 70-74, 78.
[2] 于丁一, 朱敬萍, 张小军, 等. 鱿鱼加工副产物活性物综合利用新进展[J]. 浙江海洋大学学报(自然科学版), 2019, 38(1): 83-88.
[3] 农业农村部渔业渔政管理局. 中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2020: 46.
[4] 董恩和, 张晓慧, 黄海潮, 等. 鱿鱼的营养成分、保鲜以及开发利用研究进展[J]. 江西水产科技, 2020(5): 44-49, 52.
[5] BERCEA C O, COTTRELL G S, TAMAGNINI F, et al. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) and hypertension: A review of vasodilatory mechanisms of DHA and EPA[J]. British Journal of Pharmacology, 2021, 178: 860-877.
[6] TULOWIECKA D, KOTLEGA D, PROWANS P, et al. The role of resolvins: EPA and DHA derivatives can be useful in the prevention and treatment of Ischemic stroke[J]. International Journal of Molecular Sciences, 2020, 21: 7 628-7 641.
[7] SO J, WU Da-yong, LICHTENSTEIN A H, et al. EPA and DHA differentially modulate monocyte inflammatory response in subjects with chronic inflammation in part via plasma specialized pro-resolving lipid mediators: A randomized, double-blind, crossover study[J]. Atherosclerosis, 2020, 316: 90-98.
[8] BROWN I, LEE J, SNEDDON A A, et al. Anticancer effects of n-3 EPA and DHA and their endocannabinoid derivatives on breast cancer cell growth and invasion[J]. Prostaglandins, Leukotrienes and Essential Fatty Acids, 2020, 156: 102024.
[9] HERNNDEZ C D, RAMREZ B R C, LIZRRAGA A U, et al. Cognitive improvements in a rat model with polyunsaturated fatty acids EPA and DHA through α7-nicotinic acetylcholine receptors[J]. Nutritional Neuroscience, 2020(1): 1-10.
[10] MANUEL S D V, MARA H, VALENTINA B, et al. A higher proportion of eicosapentaenoic acid (EPA) when combined with docosahexaenoic acid (DHA) in omega-3 dietary supplements provides higher antioxidant effects in human retinal cells[J]. Antioxidants (Basel, Switzerland), 2020, 9: 828-844.
[11] 岳福鹏, 苏秀榕, 李妍妍, 等. 鱿鱼肝脏油的营养成分及对小鼠血脂的影响[J]. 食品工业科技, 2011, 32(7): 394-397.
[12] 廉桂芳. 鱿鱼肝脏鱼油抗衰老及预防肝损伤功能评价[D]. 重庆: 西南大学, 2018: 32-51.
[13] MOOVENDHAN M, SEEDEVI P, VAIRAMANI S, et al. Exploring the chemical composition and anticancer potential of oil from squid (Loligo duvauceli) liver waste from fish processing industry[J]. Waste and Biomass Valorization, 2019, 10: 2 967-2 973.
[14] NICHOLS P, MCMANUS A, KRAIL K, et al. Recent advances in omega-3: Health benefits, sources, products and bioavailability[J]. Nutrients, 2014, 6: 3 727-3 733.
[15] 张德平, 宋彦泽, 谢祥军, 等. DHA对糖尿病认知障碍大鼠海马神经元SDF-1/CXCR4通路的影响[J]. 神经解剖学杂志, 2018, 34(2): 230-236.
[16] CHE Hong-xia, ZHOU Miao-miao, ZHANG Tian-tian, et al. Comparative study of the effects of phosphatidylcholine rich in DHA and EPA on Alzheimer's disease and the possible mechanisms in CHO-APP/PS1 cells and SAMP8 mice[J]. Food & Function, 2018, 9: 643-654.
[17] 杨瑞利, AENGLONG C, 曹婉秀, 等. TG-DHA高含量脱腥鱼油对脂代谢的调节作用[J]. 食品工业科技2021, 42(3): 290-303.
[18] SOPHIE E, ISABELLE H, GREGOR B, et al. Verbal memory performance in depressed children and adolescents: associations with EPA but not DHA and depression severity[J]. Nutrients, 2020, 12: 3 630-3 655.
[19] DING Lin, ZHANG Ling-yu, SHI Hao-hao, et al. The protective effect of dietary EPA-enriched ethanolamine plasmalogens against hyperlipidemia in aged mice[J]. European Journal of Lipid Science and Technology, 2020, 122(11): 2 020.
[20] 黄磊, 詹勇, 许梓荣. 虾蟹类胆固醇需要量的最新研究[J]. 饲料研究, 2004(11): 41-43.
[21] 郑振霄, 戴志远, 沈清, 等. 酶法富集DHA、EPA的研究进展及产业化展望[J]. 中国食品学报, 2019, 19(4): 301-309.
[22] 李江, 沈俊平, 王树春, 等. 高含量EPA/DHA甘油三酯的制备工艺[J]. 食品科技, 2016, 41(8): 75-78.
[23] 晁红娟, 雷占兰, 刘爱琴, 等. Omega-3多不饱和脂肪酸性质、功能及主要应用[J]. 中国食品添加剂, 2019, 30(10): 122-130.
[24] 傅志宇, 郑杰, 于笛, 等. 鱿鱼内脏的营养价值及综合利用研究进展[J]. 食品工业科技, 2019, 40(4): 307-311, 316.
[25] 徐彤砚, 张茹, 杨欣星, 等. 水酶法提取北太平洋鱿鱼肝脏油脂及其脂肪酸组成分析[J]. 食品工业科技, 2016, 37(9): 213-217.
[26] KYUNG M S, JIN P H, YOUNG J B, et al. The proximate and fatty acid compositions of the liver and gonads of commercial common squid todarodes pacificus[J]. Korean Journal of Fisheries and Aquatic Sciences, 2018, 51(6): 656-666.
[27] 董俊凡, 宋扬, 季秀娜, 等. 基于斑马鱼模型研究鱿鱼生殖腺磷脂抗MPTP诱发帕金森病的活性[J]. 食品科学, 2021, 42(5): 122-128.
[28] 管雪娇, 邓尚贵. 鱿鱼皮营养成分分析[J]. 安徽农业科学, 2013, 41(27): 11 135-11 137.
[29] KAO Yi-feng, WU Y H S, CHOU C H. et al. Manufacture and characterization of anti-inflammatory liposomes from jumbo flying squid (Dosidicus gigas) skin phospholipid extraction[J]. Food & Function, 2018, 9(7): 3 986-3 996.
[30] 张丽娟, 张欣, 胡巧云. 鱿鱼内脏油提取最新进展的研究[J]. 粮食与食品工业, 2017, 24(6): 23-26.
[31] 魏微, 张玲云, 陆晓丹, 等. 响应面法优化大黄鱼鱼卵油的酶法提取工艺[J]. 食品工业科技, 2020, 41(5): 145-150.
[32] 王乔隆, 邓放明, 唐春江, 等. 鱼油提取及精炼工艺研究进展[J]. 粮食与食品工业, 2008(3): 10-12.
[33] 王海磊, 罗庆华, 黄美娥. 鱼油的提取方法及精制工艺探讨[J]. 湖南农业科学, 2012(17): 99-102.
[34] 张钦, 孙美玲, 季小琳, 等. 有机溶剂法提取鱿鱼内脏油脂及脂肪酸分析[C]// 中国食品科学技术学会第十三届年会. 北京: 中国食品科学技术学会, 2016: 2.
[35] 杨小克. 鱿鱼内脏的鱼油提取工艺及综合利用研究[D]. 青岛: 中国海洋大学, 2012: 8-10.
[36] 韩琳, 刘程惠, 胡文忠, 等. 超临界CO2萃取鱿鱼内脏油的研究[J]. 保鲜与加工, 2015, 15(3): 49-53.
[37] 张帆, 陈虹玲, 陈锦权, 等. 有机溶剂辅助酶解法提取鲍鱼内脏鱼油的工艺研究[J]. 农产品加工, 2020(7): 39-44.
[38] 田爱民, 李东华, 周小敏, 等. 响应面法优化鱿鱼内脏酶解液与还原糖美拉德反应工艺[J]. 安徽农业科学, 2012, 40(35): 17 294-17 297, 17 326.
[39] 田爱民, 罗日明, 周小敏, 等. 鱿鱼内脏酶解液美拉德反应致香成分GC-MS分析[J]. 安徽农业科学, 2013, 41(3): 1 278-1 280.
[40] 王华军. 鱿鱼内脏团的高值化产品研发及其性能表征[D]. 福州: 福州大学, 2018: 35-48.
[41] 林煌华, 谢友坪, 马瑞娟, 等. 鱿鱼内脏粗提油的精制工艺优化及其理化指标分析[J]. 食品工业科技, 2020, 41(6): 172-179.
[42] 王建中, 吕玉英, 徐正琪. 鱿鱼内脏的综合利用研究[J]. 中国海洋药物, 1999(1): 55-58.
[43] 李道明. Lipase SMG1-F278N在高酸价油脂脱酸中的应用研究[D]. 广州: 华南理工大学, 2018: 82-101.
[44] LEE W J, TAN C P, SULAIMAN R, et al. Microencapsulation of red palm oil as an oil-in-water emulsion with supercritical carbon dioxide solution-enhanced dispersion[J]. Journal of Food Engineering, 2018, 222: 100-109.
[45] ERATTE D, DOWLING K, BARROW C J, et al. Recent advances in the microencapsulation of omega-3 oil and probiotic bacteria through complex coacervation: A review[J]. Trends in Food Science & Technology, 2018, 71: 121-131.
[46] 曹少谦, 李冲冲, 王正东, 等. 鱼油微粉的制备及其稳定性分析[J]. 食品工业科技, 2021, 42(10): 168-174.
[47] 彭茜. 壳聚糖微胶囊对金枪鱼鱼油抗氧化作用的研究[D]. 杭州: 浙江工商大学, 2019: 1-11.
[48] 王寒, 于华忠, 罗庆华, 等. 响应面法优化大鲵油微胶囊制备工艺[J]. 中国油脂, 2017, 42(9): 106-111.
[49] EDRIS A E, KALEMBA D, ADAMIEC J, et al. Microencapsulation of Nigella sativa oleoresin by spray drying for food and nutraceutical applications[J]. Food Chemistry, 2016, 204: 326-333.
[50] 江连洲, 王朝云, 古力那孜·买买提努, 等. 干燥工艺对鱼油微胶囊结构和品质特性的影响[J]. 食品科学, 2020, 41(3): 86-92.
[51] 林彩平, 苏永昌, 黄煜, 等. 鱿鱼肝油微胶囊化技术研究[J]. 福建水产, 2012, 34(2): 111-120.
[52] 李杨, 徐静雯, 于静雯, 等. 不同蛋白微射流喷雾干燥制备鱼油微胶囊性能研究[J]. 农业机械学报, 2020, 51(3): 350-357.
[53] YANG Xiao-xi, SUN Zhen-dong, WANG Wan-yi, et al. Developmental toxicity of synthetic phenolic antioxidants to the early life stage of zebrafish[J]. Science of the Total Environment, 2018, 643: 559-568.
[54] 刘汝萃, 张建全, 肖晶, 等. 天然抗氧化剂对鱼油抗氧化作用的影响[J]. 食品工业, 2018, 39(2): 34-36.
[55] 常馨月, 陈程莉, 龚娣, 等. 天然抗氧化剂抑制油脂氧化的研究进展[J]. 中国油脂, 2020, 45(4): 46-50.