Abstract
Objective: This study focuses on realizing the automatic classification of liquor flowers and then improving the real-time and stability of liquor picking. Methods: The machine vision combined with convolutional neural network was used to replace human eyes for liquor picking. Comparing with many image classification methods, the superiority of the improved algorithm was verified. Results: The results showed that the classification accuracy of the model based on the improved Vgg16 convolutional neural network plus transferring-learning method was up to 96.69%. Conclusion: This method can be used in the real-time classification of Baijiu hops stably.
Publication Date
10-28-2021
First Page
30
Last Page
37,88
DOI
10.13652/j.issn.1003-5788.2021.10.006
Recommended Citation
Bin, PAN; Qiang, HAN; and Ya-chuan, YAO
(2021)
"Research on classification of liquor hops based on convolution neural network,"
Food and Machinery: Vol. 37:
Iss.
10, Article 6.
DOI: 10.13652/j.issn.1003-5788.2021.10.006
Available at:
https://www.ifoodmm.cn/journal/vol37/iss10/6
References
[1] 赵平. 一种自动化操作的白酒量质摘酒装置: CN206188782U[P]. 2017-05-04.
[2] 何盛国, 冯涛, 孙毅, 等. 温度、压力和酒精度控制量质摘酒装置: CN201210569678.2[P]. 2013-07-31.
[3] 范明明. 基于近红外技术的白酒摘酒在线检测装置开发[D]. 镇江: 江苏大学, 2019: 1-2.
[4] 余锴鑫. 基于图像分类算法的自动化摘酒方法研究[D]. 杭州: 浙江大学, 2019: 15-20.
[5] 陈林, 庹先国, 张贵宇, 等. 基于酒精度重建模型的摘酒技术研究[J]. 中国酿造, 2019, 38(3): 23-27.
[6] 杨静娴, 任小洪. 基于图像处理的白酒酒花轮廓检测[J]. 食品与机械, 2019, 35(12): 52-55, 145.
[7] 卢文龙. 浓香型白酒生产中感官检验方法的探讨[J]. 酿酒科技, 2007(3): 71-74.
[8] 李增胜. 汾酒看花接酒在今天的运用[J]. 酿酒科技, 1991(1): 28-29.
[9] 顾梅花, 王苗苗, 李立瑶, 等. 彩色图像多尺度融合灰度化算法[J]. 计算机工程与应用, 2021, 57(4): 209-215.
[10] 郭慧娟, 白文江, 岳云霄, 等. 去除图像椒盐噪声的自适应迭代均值滤波算法[J]. 太原学院学报(自然科学版), 2020, 38(3): 23-28.
[11] 郭晓惠. 一种高效去除椒盐噪声机械零件图像算法[J]. 信息技术与信息化, 2020(10): 38-41.
[12] 李俊峰. 改进高斯滤波算法的舰船尾迹图像无损去噪技术[J]. 舰船科学技术, 2020, 42(18): 37-39.
[13] 秦敏. 基于深度学习的花卉图像分类识别模型研究[D]. 桂林: 广西师范大学, 2020: 12-15.
[14] 谭涛. 基于卷积神经网络的随机梯度下降优化算法研究[D]. 重庆: 西南大学, 2020: 13-19.
[15] 吕恩辉, 王雪松, 程玉虎. 基于反卷积特征提取的深度卷积神经网络学习[J]. 控制与决策, 2018, 33(3): 447-454.
[16] 王锦, 赵德群, 邓钱华, 等. 基于自适应动量因子的BP神经网络优化方法研究[J]. 现代信息科技, 2019, 3(7): 11-13.