Abstract
Objective: To study the modification process of carboxymethylated Camellia Oleifera seed meal polysaccharide (CM-COP) and acetylated Camellia Oleifera seed meal polysaccharide (Ac-COP), and to study their inhibitory effects on hyaluronidase. Methods: Using the degree of substitution as an index, the carboxymethylation and acetylation modification of Camellia Oleifera seed meal polysaccharide (COP) were carried out by sodium hydroxide-chloroacetic acid method and acetic anhydride method, respectively. Results: The best modification process for CM-COP was: sodium hydroxide concentration of 1.5 mol/L, reaction time of 3 h, reaction temperature of 60 ℃; Ac-COP best modification process is: acetic anhydride dosage 3.0 mL, reaction time 3 h, The reaction temperature was 60 ℃; and the inhibition rates of COP, CM-COP, and Ac-COP to hyaluronidase were 78.0%, 90.3% and 92.2%, respectively. Conclusion: COP, CM-COP, and Ac-COP all have inhibitory effects on hyaluronidase, and the inhibitory activities of CM-COP and Ac-COP are higher than COP, indicating that the modification can increase the biological activity of COP.
Publication Date
10-28-2021
First Page
44
Last Page
49
DOI
10.13652/j.issn.1003-5788.2021.10.008
Recommended Citation
Jian-an, YANG; Chao, ZHANG; Yan-bing, WEN; and Fang, FANG
(2021)
"Study on carboxymethylated and acetylated modification process of Camellia Oleifera seed meal polysaccharides and its hypoglycemic activity,"
Food and Machinery: Vol. 37:
Iss.
10, Article 8.
DOI: 10.13652/j.issn.1003-5788.2021.10.008
Available at:
https://www.ifoodmm.cn/journal/vol37/iss10/8
References
[1] XIA Shun-li, ZHAI Yong-cong, WANG Xue, et al. Phosphorylation of polysaccharides: A review on the synthesis and bioactivities[J]. International Journal of Biological Macromolecules, 2021, 184(8): 946-954.
[2] JIN Xian-chun, NING Yu. Antioxidant and antitumor activities of the polysaccharide from seed cake of Camellia oleifera Abel[J]. International Journal of Biological Macromolecules, 2012, 51(4): 364-368.
[3] 肖建琪, 李达, 张杰, 等. 蒿属植物降糖活性成分及提取方法研究进展[J]. 药学进展, 2019, 43(1): 59-63.
[4] 郑娟霞, 陈文宁, 月金玲, 等. 海带多糖降血脂活性研究进展[J]. 食品与机械, 2020, 36(6): 220-223.
[5] 余腾飞, 唐年初, 刘诚毅. 忧遁草多糖提取工艺优化及抗氧化活性研究[J]. 食品与机械, 2020, 36(2): 171-175.
[6] 邵佩, 庄虎, 谢超, 等. 超声辅助提取红豆多糖及其生物活性研究[J]. 食品与机械, 2021, 37(2): 173-178.
[7] LIU Feng, LIU Wen-hui, TIAN Shu-ge. Artificial neural network optimization of Althaea rosea seeds polysaccharides and its antioxidant activity[J]. International Journal of Biological Macromolecules, 2014, 70(9): 100-107.
[8] GAO Chang, CAI Chang-yong, LIU Jia-jia, et al. Extraction and preliminary purification of polysaccharides from Camellia oleifera Abel. seed cake using a thermoseparating aqueous two-phase system based on EOPO copolymer and deep eutectic solvents[J]. Food Chemistry, 2020, 313(3): 126164.
[9] 徐迪, 徐冰彦, 张浩, 等. 油茶子饼粕多糖的降血糖活性研究[J]. 湖北农业科学, 2019, 58(20): 147-151, 160.
[10] MACHOV Eva, PETER Bystricky, MALOVKOV Aana, et al. Preparation and characterization of carboxymethyl derivatives of yeast mannans in aqueous solutions[J]. Carbohydrate Polymers, 2014, 110: 219-223.
[11] 梁英, 毕红梅, 郑文凤, 等. 平菇多糖硫酸酯制备工艺优化及抗氧化活性研究[J]. 食品与机械, 2021, 37(1): 175-179.
[12] 焦中高, 刘杰超, 王思新, 等. 羧甲基化红枣多糖制备及其活性[J]. 食品科学, 2011, 32(17): 176-180.
[13] 陈巧玲, 袁琳, 王也, 等. 北苍术粗多糖提取工艺优化及体外抗炎活性研究[J]. 生物医学工程与临床, 2019(5): 517-523.
[14] MACHOV E, BYSTRICKY P, MALOVKOV A, et al. Preparation and characterization of carboxymethyl derivatives of yeast mannans in aqueous solutions[J]. Carbohydrate Polymers, 2014, 110(9): 219-223.
[15] XU C, LEPPNEN A S, EKLUND P, et al. Acetylation and characterization of spruce (Picea abies) galactoglucomannans[J]. Carbohydrate Research, 2010, 345(6): 810-816.
[16] SONG Yi, YANG Yang, ZHANG Yu-yu, et al. Effect of acetylation on antioxidant and cytoprotective activity of polysaccharides isolated from pumpkin (Cucurbita pepo, lady godiva)[J]. Carbohydrate Polymers, 2013, 98(1): 686-691.
[17] WANG Zhi-jun, XIE Jian-hua, SHEN Ming-yue, et al. Carboxymethylation of polysaccharide from Cyclocarya paliurus and their characterization and antioxidant properties evaluation[J]. Carbohydrate Polymers, 2016, 136(1): 988-994.
[18] MLLER S, SCHMIDTKE M, WEISS D, et al. Synthesis and antiherpetic activity of carboxymethylated and sulfated hyaluronan derivatives[J]. Carbohydrate Polymers, 2012, 90(1): 608-615.