Abstract
Objective: A new method for the rapid detection of chloramphenicol in eggs was established, by preparing the aptamer magnetic bead complex, based on the mechanism of inhibiting the catalytic color reaction between the DNase and heme. Methods: The aptamer and DNase was combined through complementary base pairing, and it was combined with aptamer composite magnetic beads. Furthernore, by adding different concentrations of chloramphenicol solution, the DNase and chloramphenicol nucleic acid adaptation was disintegrated by dissociation of DNase catalytic chromogenic reaction combined with hemoglobin. Results: The linear range of chloramphenicol was 0.001~100.000 mg/kg, and the absorbance was linearly correlated with the concentration of chloramphenicol. The recoveries of the colorimetric method were 98.4%~101.1% at 5, 10, 25 mg/kg, and the relative standard deviations were all less than 10%. Conclusion: By introducing DNASE and magnetic nanoparticles, this method can effectively overcome the false positive results caused by non-specific adsorption of traditional rapid detection methods, and is more suitable for rapid detection of chloramphenicol residues in eggs.
Publication Date
11-28-2021
First Page
61
Last Page
66,104
DOI
10.13652/j.issn.1003-5788.2021.11.011
Recommended Citation
Hui, CHENG; Shun, LIU; Bo, LI; Yu-lan, HUANG; and Tao, ZHOU
(2021)
"An aptamer colorimetric method was established to detect chloramphenicol in eggs based on DNase-catalyzed reaction,"
Food and Machinery: Vol. 37:
Iss.
11, Article 11.
DOI: 10.13652/j.issn.1003-5788.2021.11.011
Available at:
https://www.ifoodmm.cn/journal/vol37/iss11/11
References
[1] 任帅, 丁桥棋, 李丽, 等. 新型氯霉素化学发光芯片免疫检测方法的建立及应用[J]. 分析化学, 2018, 46(10): 1 581-1 587.
[2] 许小炫, 苏晓娜, 谭庶, 等. 间接竞争化学发光酶联免疫分析方法检测禽肉中金刚烷胺和氯霉素残留[J]. 食品科学, 2021, 42(4): 305-312.
[3] LEI M, WU Y Q, XU N, et al. Gold nanoclusters fluorescence probe for monitoring chloramphenicol and study of two-dimensional correlation fluorescence spectroscopy[J]. Journal of Molecular Structure, 2021, 1 223(5): 875-881.
[4] MANJULA N, CHEN S M. Synthesis of highly electroactive nanoflowers likemanganesetin oxide and electroanalytical application for chloramphenicol determination in milk and honey samples[J]. Journal of Electoanalytical Chemistry, 2021, 880(1): 914-922.
[5] 吴珊珊, 孙治安, 田央, 等. 氯霉素单分散限进分子印迹聚合物的制备及其识别特性研究[J]. 分析化学, 2019, 47(3): 471-478.
[6] LI Y B, WANG L, ZHAO L T, et al. An fluorescence resonance energy transfer sensing platform based on signal amplification strategy of hybridization chain reaction and triplex DNA for the detection of Chloramphenicol in milk[J]. Food Chemistry, 2021, 357(30): 769-775.
[7] FATEMEH A, SHAHRAM G, SEYED N A, et al. Design of turn-on luminescent sensor based on nanostructured molecularly imprinted polymer-coated zirconium metal-organic framework for selective detection of chloramphenicol residues in milk and honey[J]. Food Chemistry, 2021, 347(15): 34-44.
[8] WU S W, KO J L, LIU B H, et al. A sensitive two-analyte immunochromatographic strip for simultaneously detecting aflatoxin M1 and chloramphenicol in milk[J]. Toxins, 2020, 12(10): 637-694.
[9] YAN X L, JI Y L, XUE X X, et al. One-pot label-free dual-aptasensor as a chemiluminescent tool kit simultaneously detect adenosine triphosphate and chloramphenicol in foods[J]. Talanta, 2021, 229(1): 226-233.
[10] 金晓峰, 焦仁刚, 赵贵, 等. 通过式固相萃取/超高效液相色谱—串联质谱法快速测定鸡蛋中的8种兽药残留[J]. 分析科学学报, 2020, 36(6): 906-911.
[11] 杨黎, 刘星, 廖夏云, 等. 高效液相色谱—串联质谱法同时测定蜂胶、蜂胶原料保健食品中的氯霉素、甲砜霉素与氟甲砜霉素[J]. 分析测试学报, 2020, 39(7): 887-893.
[12] 栗有志, 李艳美, 周均, 等. 分散微固相萃取—高效液相色谱—串联质谱法测定水样中3种氯霉素类和11种激素类药物残留[J]. 分析科学学报, 2020, 36(1): 69-74.
[13] 卢静荷, 谭淑珍, 朱雨清, 等. 荧光核酸适配体功能化氧化石墨烯生物传感器用于快速检测氯霉素[J]. 化学学报, 2019, 77(3): 253-256.
[14] 赵晗, 于丽佳, 吴志生, 等. 基于核酸适配体调控噻菁染料聚集体构建铅离子检测方法[J]. 食品与机械, 2021, 37(1): 73-78.
[15] 王玲, 管笛, 周欣, 等. 磁性化学发光酶免疫法检测猪肉中的氯霉素[J]. 食品科学, 2017, 38(10): 305-309.
[16] 范维, 高晓月, 李贺楠, 等. 高通量抗生素残留初筛试剂盒的研制及应用[J]. 食品科学, 2019, 40(14): 333-338.
[17] XU L, HE X Y, DONG J T. et al. A photoelectrochemicalaptasensor for sensitively monitoring chloramphenicol using plasmon-driven AgNP/BiOCl composites[J]. Analyst, 2021, 145(23): 7 695-7 700.
[18] TAO X Q, HE F, LIU X X, et al. Detection of chloramphenicol with an aptamer-based colorimetric assay: Critical evaluation of specific and unspecific binding of analyte molecules[J]. Microchimica Acta, 2020, 187(12): 44-60.
[19] CHEN Y, YAN P P, LU G F, et al. A highly selective photoelectrochemical chloramphenicol aptasensor based on AgBr/BiOBr heterojunction[J]. Inorganic Chemistry Communications, 2020, 123(1): 333-340.
[20] 王鑫, 刘河冰, 陶晓奇, 等. 基于核酸适配体检测动物性食品中氯霉素残留的研究进展[J]. 食品与发酵工业, 2019, 45(18): 254-262.
[21] 张娜, 韦丽婷, 李向丽, 等. 核酸适配体-纳米金可视化检测盐酸克伦特罗[J]. 现代食品科技, 2019, 35(7): 301-307.
[22] 涂东堃, 鲁悦, 郑晓亮, 等. 基于荧光分子开关和核酸适配体的镉离子快速检测方法[J]. 食品与机械, 2020, 36(3): 63-68.
[23] 陈佳琦, 吴海燕, 张旭志, 等. 一种高灵敏检测贝类中大田软海绵酸的可抛式核酸适配体传感器[J]. 分析化学, 2019, 47(6): 869-875.
[24] LI W, LI Y, LIU Z L, et al. Insight into G-quadruplex-hemin DNAzyme/RNAzyme: adjacent adenine as the intramolecular species for remarkable enhancement of enzymatic activity[J]. Nucleic Acids Research, 2016, 44(15): 7 373-7 384.
[25] YAN C, ZHANG J, YAO L, et al. Aptamer-mediated colorimetric method for rapid and sensitive detection of chloramphenicol in food[J]. Food Chemistry, 2018, 260(15): 208-212.
[26] HUANG W, ZHANG H, LAI G, et al. Sensitive and rapid aptasensing of chloramphenicol by colorimetric sig-nal transduction with a DNAzyme-functionalized gold nan-oprobe[J]. Food Chemistry, 2019, 270(1): 287-292.
[27] 高慧菊, 潘道东, 孙杨赢, 等. 鱼肉和鹅肉中氯霉素的比色适配体传感快速检测[J]. 现代食品科技, 2016, 32(5): 315-321.
[28] MAHBOBEH J, MOHAMMAD R H, ASMA V, et al. Detection of chloramphenicol using a novel apta-sensing platform based on aptamer terminal-lock in milk samples[J]. Analytical Chimica Acta, 2018, 1 039(18): 116-123.