Abstract
Objective: This research aims to analyze the working condition of the material in the flow channel of the improved coaxial variable speed optimization twin-screw extruder. Methods: Used ANSYS/CFX to simulate and analyze the flow channel value, obtained the movement of the material, and compared it with the traditional screw twin screw. The performance of the two types of screws was compared and analyzed through the macro pressure field, macro speed field, velocity streamline diagram, and velocity vector diagram. Results: After the study, it was found that the pressure building capacity and mixing performance of the coaxial variable speed optimized twin screw were significantly better than that of the traditional twin screw, and the material transportation time could be effectively extended through the decelerated conveying in the middle section. Conclusion: The new optimized twin-screw, while retaining the advantages of the traditional twin-screw, additionally improves the pressure building capacity and mixing performance.
Publication Date
11-28-2021
First Page
77
Last Page
80,192
DOI
10.13652/j.issn.1003-5788.2021.11.014
Recommended Citation
Lin-sen, TANG; Shu-guo, GUO; Li-yan, WANG; and Yan-lin, HAN
(2021)
"Three-dimensional flow field analysis of coaxial variable speed twin-screw extruder based on CFX,"
Food and Machinery: Vol. 37:
Iss.
11, Article 14.
DOI: 10.13652/j.issn.1003-5788.2021.11.014
Available at:
https://www.ifoodmm.cn/journal/vol37/iss11/14
References
[1] 张裕中, 王景. 食品挤压加工技术与应用[M]. 北京: 中国轻工业出版社, 1998: 13-17.
[2] 王会然, 李宗军. 螺杆挤压机及其应用研究现状[J]. 食品工业, 2011, 32(10): 99-102.
[3] VAN DEN EINDE R M, KROON P, VAN DER GOOT A J, et al. Local mixing effects of screw elements during extrusion[J]. Polymer Engineering and Science, 2005, 45(3): 271-278.
[4] 刘平. 同向双螺杆挤出机浅析[J]. 农村致富之友, 2017(15): 123.
[5] 付昱东, 何东, 杨庆余, 等. 挤压膨化技术在玉米深加工产业中研究现状及应用[J]. 农产品加工, 2020(4): 68-71, 76.
[6] MARTIN R, CLEARY P W. Effect of geometry and fill level on the transport and mixing behaviour of a co-rotating twin screw extruder[J]. Springer International Publishing, 2019, 6(2): 240.
[7] 郭树国, 徐文海, 王丽艳, 等. 基于ANSYS的豆粕组合螺杆挤出机三维流场模拟分析[J]. 食品工业, 2014, 35(11): 225-227.
[8] 张洪才. ANSYS14.0理论解析与工程应用实例[M]. 北京: 机械工业出版社, 2012:40-72.
[9] 陈晋南, 胡冬冬. 计算流体动力学(CFD)及其软件包在双螺杆挤出中的应用[J]. 中国塑料, 2001(12): 12-16.
[10] 石兆东, 王伟, 张康. 基于CFD的非啮合并列型双螺杆挤出机三维流场数值模拟[J]. 煤矿机械, 2007(1): 30-32.
[11] 郭树国, 张召, 王丽艳, 等. 基于CFX的豆粕单螺杆挤出机的三维流场分析[J]. 大豆科学, 2015, 34(4): 699-702.
[12] 郭树国, 张召, 王丽艳. 基于ANSYS的豆粕双螺杆膨化机的三维流场分析[J]. 中国农机化学报, 2014, 35(6): 213-216, 240.
[13] 汤霖森, 郭树国, 王丽艳. 基于ANSYS的带行星轮同轴变速单螺杆挤出机三维流场分析[J]. 食品与机械, 2021, 37(5): 107-110.
[14] 王少峰, 张媛, 刘美莲, 等. 不同温度状态下啮合异向双螺杆挤出机的流道分布规律[J]. 食品与机械, 2018, 34(10): 71-74.
[15] 章梓雄, 董曾南. 黏性流体力学[M]. 北京: 清华大学出版社, 1999: 749-751.
[16] 唐庆菊, 李纪强, 周平. 基于ANSYS的食品双螺杆挤出机流场数值模拟[J]. 机械设计与制造, 2007(12): 94-95.