Abstract
Objective: To study the microwave freeze-drying kinetics and product quality of Cornus officinalis. Methods: The microwave freeze-drying technology was used to analyze the drying characteristics, quality changes of total flavonoids and total phenols of Cornus officinalis under different microwave power (100, 200, 300, 400, 500 W), and the related kinetic model was established. Results: The drying process of Cornus officinalis could be divided into two stages: rising rate and decreasing rate, and there was no obvious constant rate stage. The increase of microwave power could improve the drying rate and shorten the drying time. Data fitting showed that page model could accurately predict the change of moisture content in the drying process of Cornus officinalis. In the whole drying process, the total flavonoids content showed two stages of rapid decline and gentle decline, the total phenol content showed a rapid decline trend, and the higher the microwave power, the faster the total flavonoids and total phenol content decreased. The microwave power had significant effects on the rehydration ratio and color (P<0.05). Conclusion: Microwave power can increase drying rate and shorten drying time, but too high microwave power is easy to degrade the quality of dry products.
Publication Date
11-28-2021
First Page
111
Last Page
117,129
DOI
10.13652/j.issn.1003-5788.2021.11.020
Recommended Citation
Meng-yue, ZHAO; Xu, DU; Guang-yue, REN; Lin-lin, LI; Pan-pan, LIU; Yi-ming, XU; and Xin-zi, CHE
(2021)
"Drying kinetics and quality changes analysis of Cornus officinalis dried by microwave freeze-drying,"
Food and Machinery: Vol. 37:
Iss.
11, Article 20.
DOI: 10.13652/j.issn.1003-5788.2021.11.020
Available at:
https://www.ifoodmm.cn/journal/vol37/iss11/20
References
[1] 范倩, 陈雪冰, 荣莉, 等. 山茱萸化学成分、生物活性、复方应用及质量控制研究进展[J]. 天然产物研究与开发, 2020, 32(7): 1 244-1 258.
[2] HUANG J, ZHANG Y, DONG L, et al. Ethnopharmacology, phytochemistry, and pharmacology of Cornus officinalis Sieb. et Zucc[J]. Journal of Ethnopharmacology, 2018, 213: 280-301.
[3] 胡青平, 徐建国, 朱志敏, 等. 山茱萸总皂甙的抑菌作用研究[J]. 食品科学, 2006(10): 162-164.
[4] 马庆一, 陈丽华, 杨海延, 等. 山茱萸中α-葡萄糖苷酶抑制活性因子的筛选(Ⅰ)[J]. 食品科学, 2007(1): 145-148.
[5] LIU Y H, ZHU W X, LUO L, et al. Drying characteristics and process optimization of vacuum far-infrared radiation drying on Cornus officinalis[J]. Advanced Materials Research, 2012, 554/555/556: 1 459-1 465.
[6] HORECKI A T, VAKULA A, PAVLIC B, et al. Comparative drying of cornelian cherries: Kinetics modeling and physico-chemical properties[J]. Journal of Food Processing & Preservation, 2018, 42(3): e13562.
[7] 刘云宏, 朱文学, 马海乐. 山茱萸真空干燥模型建立与工艺优化[J]. 农业机械学报, 2010, 41(6): 118-122.
[8] AMBROS S, MAYER R, SCHUMANN B, et al. Microwave-freeze drying of lactic acid bacteria: Influence of process parameters on drying behavior and viability[J]. Innovative Food Science & Emerging Technologies, 2018, 48: 90-98.
[9] FAN K, ZHANG M, MUJUMDAR A S. Recent developments in high efficient freeze-drying of fruits and vegetables assisted by microwave: A review[J]. Crit Rev Food Nutr, 2019, 59(8): 1 357-1 366.
[10] DUAN X, ZHANG M, MUJUMDA R A S. Studies on the microwave freeze drying technique and sterilization characteristics of cabbage[J]. Drying Technology, 2007, 25(10): 1 725-1 731.
[11] CAO X, ZHANG M, MUJUMDARA S, et al. Effect of microwave freeze drying on quality and energy supply in drying of barley grass[J]. Journal of the Science of Food and Agriculture, 2018, 98(4): 1 599-1 605.
[12] 段柳柳, 段续, 任广跃. 怀山药微波冻干过程的水分扩散特性及干燥模型[J]. 食品科学, 2019, 40(1): 31-38.
[13] 胡云峰, 位锦锦, 李宁, 等. 不同热风干燥温度对枸杞干燥特性的影响[J]. 食品与发酵工业, 2017, 43(1): 130-134.
[14] 关志强, 王秀芝, 李敏, 等. 荔枝果肉热风干燥薄层模型[J]. 农业机械学报, 2012, 43(2): 151-158.
[15] 周明, 徐明生, 陈金印, 等. ‘修水化红’甜橙皮热风干燥动力学及其品质特性分析[J]. 食品科学, 2020, 41(11): 141-149.
[16] MURTHY T, MANOHAR B. Hot air drying characteristics of mango ginger: Prediction of drying kinetics by mathematical modeling and artificial neural network[J]. Journal of Food Science and Technology-Mysore, 2014, 51(12): 3 712-3 721.
[17] 王烁, 蒋明蔚, 李晓斌, 等. 蜂胶中总黄酮含量的测定[J]. 食品与发酵工业, 2012, 38(12): 152-156.
[18] 赵丹丹, 陈冬, 彭郁, 等. 枸杞热风干燥过程动力学模型及品质分析[J]. 中国食品学报, 2018, 18(3): 114-124.
[19] DOYMAZ B. Drying kinetics, rehydration and colour characteristics of convective hot-air drying of carrot slices[J]. Heat & Mass Transfer, 2016, 53(1): 1-11.
[20] 段柳柳, 段续, 任广跃. 微波冻干怀山药脆片干燥过程中脆性变化与数学模型的建立[J]. 食品科学, 2018, 39(23): 38-44.
[21] 任广跃, 任丽影, 张伟, 等. 正交试验优化怀山药微波辅助真空冷冻干燥工艺[J]. 食品科学, 2015, 36(12): 12-16.
[22] REN G Y, ZENG F L, DUAN X, et al. The effect of glass transition temperature on the procedure of microwave-freeze drying of mushrooms (Agaricus bisporus)[J]. Drying Technology, 2015, 33(2): 169-175.
[23] 俞邱豪, 程焕, 王楠, 等. 类黄酮微胶囊技术及其在食品工业中的应用进展[J]. 中国食品学报, 2017, 17(7): 175-183.
[24] 杜利平, 闫慧娇, 王晓, 等. 牡丹花低温干燥过程中生理特性及功效成分的变化研究[J]. 食品科技, 2016, 41(2): 59-64.
[25] DUAN X, LIU W C, RENG Y, et al. Browning behavior of button mushrooms during microwave freeze-drying[J]. Drying Technology, 2016, 34(11): 1 373-1 379.
[26] 代建武, 杨升霖, 王杰, 等. 微波真空干燥对香蕉片干燥特性及品质的影响[J]. 农业机械学报, 2020, 51(S1): 493-500.
[27] TEPE T K, TEPE B. The comparison of drying and rehydration characteristics of intermittent-microwave and hot-air dried-apple slices[J]. Heat and Mass Transfer, 2020, 56(11): 3 047-3 057.