Abstract
Objective: To study the drying shrinkage mechanism of tobacco leaves during the redrying process. Methods: Based on the theory of porous media and elasticity, combined with Fourier's law and Fick's law, the numerical simulation of the thermal expansion, hygroscopic expansion and temperature coupling process in the tobacco leaf drying process was realized. Results: During the redrying process, the maximum stress occurred when the tobacco leaves were dried for about 3 minutes. The moisture stress during the drying process was much greater than the thermal stress; During the low-temperature slow-curing process, the internal moisture evaporation rate of the tobacco leaves was low, so that the shrinkage rate of the tobacco leaves was not high; The shrinkage rate in the drying stage during the redrying process of tobacco leaves was 10%, and the maximum error was 3%. Conclusion: The moisture content is the main influencing factor of the drying shrinkage and deformation of tobacco leaves.
Publication Date
11-28-2021
First Page
136
Last Page
141
DOI
10.13652/j.issn.1003-5788.2021.11.024
Recommended Citation
Ji-wei, QIN; Li-hua, WANG; Wei, JIANG; Jiong-li, WANG; and Tong-peng, JIA
(2021)
"Simulation analysis of tobacco leaf redrying and drying process based on COMSOL,"
Food and Machinery: Vol. 37:
Iss.
11, Article 24.
DOI: 10.13652/j.issn.1003-5788.2021.11.024
Available at:
https://www.ifoodmm.cn/journal/vol37/iss11/24
References
[1] VARGAS P O, PEREIRA N R, GUIMARES A O, et al. Shrinkage and deformation during convective drying of calcium alginate[J]. Food Science and Technology, 2018(97): 213-222.
[2] 陈则韶, 陈建新, 谭洋, 等. 烟草导热系数与含水率、堆密度的综合关系[J]. 中国科学技术大学学报, 2005(1): 127-132.
[3] 马亚萍, 刘朝贤, 王乐, 等. 不同温度条件下烟丝—发烟剂体系热物性研究[J]. 食品与机械, 2017, 33(9): 69-73.
[4] 王莉, 李根宝. 膨胀烟丝填充值与水分的相对关系及修正系数的确定[J]. 烟草科技, 1994(6): 11-13.
[5] 张建文, 辛亚男, 李斌. 干燥介质温湿度条件对片烟干燥动力学特性的影响[J]. 烟草科技, 2014(10): 15-19.
[6] SILVA V, COSTA J J, RUI FIGUEIREDO A, et al. Study of three-stage intermittent drying of pears considering shrinkage and variable diffusion coefficient[J]. Journal of Food Engineering, 2016, 180: 77-86.
[7] GULATI T, DATTA A K. Mechanistic understanding of case-hardening and texture development during drying of food materials[J]. Journal of Food Engineering, 2015, 166: 119-138.
[8] 王金明, 毕继华, 杨松泉. 烤烟打叶复烤片烟皱缩率影响因素研究[J]. 中国烟草科学, 2011, 32(4): 28-30.
[9] 包亚峰. 烟叶烘烤过程中的热湿分析与优化[D]. 重庆: 重庆大学, 2015: 1-19.
[10] 胡开文. 烟叶打叶复烤工艺与设备[M]. 北京: 化学工业出版社, 2002: 91-96.
[11] 傅秦生. 热工基础与应用[M]. 北京: 机械工业出版社, 2007: 91-108.
[12] ALAM M S, KHATUN M A, RAHMAN M M, et al. Effects of variable fluid properties and thermophoresis on unsteady forced convective boundary layer flow along a permeable stretching/shrinking wedge with variable Prandtl and Schmidt numbers[J]. International Journal of Mechanical Sciences, 2016, 105: 191-205.
[13] 张连杰, 刘礼领, 张晓健. 基于湿度应力场理论的膨胀土吸湿变形分析[J]. 工程勘察, 2018, 46(9): 29-32.
[14] 段鹍, 朱文魁, 陈谦, 等. 变温干燥过程中烟丝含水率与温度变化特征[J]. 烟草科技, 2014(4): 20-25.
[15] 向靖锋, 王立华, 黄亚宇. 烟叶打叶机打叶过程数值模拟分析[J]. 农业装备与车辆工程, 2020, 58(11): 56-59.
[16] 陈则韶, 郭俊成, 贾磊, 等. 用平面热源过渡态平板法同时测定烟叶的λ、α和cp三种热物性[J]. 中国科学技术大学学报, 2002(3): 54-58.
[17] 仝振伟, 张秀丽, 邹彩虹, 等. 中部烟叶主脉的力学特性试验[J]. 江苏农业科学, 2019, 47(21): 270-272, 281.
[18] 顾会战, 杨晓亮, 彭毅, 等. 密集烘烤过程中烟叶温度与烟叶形变的相关性[J]. 安徽农业科学, 2013, 41(11): 5 048-5 050.
[19] 李小兰, 侯鹏娟, 李强, 等. 不同类型烟草孔隙结构的差异化研究[C]// 广西烟草学会2018年论文汇编. 南宁: 广西烟草学会, 2018: 8.
[20] 许冰洋, 朱文魁, 潘广乐, 等. 基于收缩特性分析的叶丝快速对流干燥动力学模型[J]. 烟草科技, 2015, 48(9): 69-74.
[21] 黄嘉祁. 烟草工业手册[M]. 北京: 中国轻工业出版社, 1999: 547-557.
[22] 朱文魁, 徐德龙, 周雅宁, 等. 基于数字图像分析法的片烟干燥收缩特性研究[J]. 河南农业科学, 2014, 43(7): 160-164.
[23] 徐大勇, 李新锋, 范明登, 等. 复烤温度对片烟收缩率及大小分布的影响[J]. 烟草科技, 2013(3): 12-16.