Abstract
Objective: The hyperlipidemia rat model was established to study the hypolipidemic effect of compound kelp meal substitute powder rich in dietary fiber and unsaturated fatty acids. Methods: Male SD rats were divided into blank control group, model control group and high, medium and low dose groups: 6.58, 3.29 and 1.65 g/kg (equivalent to 10, 5 and 2.5 times of the recommended dose of human body respectively). The blank control group was fed with basic diet, and the other groups were fed with high-fat diet, and the three dose groups were given the corresponding concentration of compound kelp powder suspension by gavage. After four weeks of continuous intragastric administration, the serum levels of total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) were measured, and the atherosclerosis index (AI) was calculated. Results: The three doses of compound kelp powder could reduce serum TC (low dose group P<0.05, medium and high dose group P<0.01), TG (P<0.05) and LDL-C level (low dose group P<0.05, medium and high dose group P<0.01), and increase HDL-C level (medium and high dose group P<0.01) showing dose-dependent. Moreover, it could effectively inhibit the increase of atherosclerotic index in hyperlipidemic rats (P<0.01). Conclusions: Compound kelp meal substitute powder had a good effect on reducing blood lipid and anti-atherosclerosis.
Publication Date
11-28-2021
First Page
178
Last Page
182
DOI
10.13652/j.issn.1003-5788.2021.11.031
Recommended Citation
Li, ZHANG; Shi-ming, NIE; Yun-zhong, CHEN; and Chun-chao, YAN
(2021)
"Auxiliary hypolipidemic effect of compound kelp meal substitute powder,"
Food and Machinery: Vol. 37:
Iss.
11, Article 31.
DOI: 10.13652/j.issn.1003-5788.2021.11.031
Available at:
https://www.ifoodmm.cn/journal/vol37/iss11/31
References
[1] 侯晅, 戴学文, 房志仲. 抗高血脂药物的研究进展[J]. 天津药学, 2016, 28(4): 59-64.
[2] WA Y, YIN B, GU R, et al. Effects of single probiotic-and combined probiotic-fermented milk on lipid metabolism in hyperlipidemic rats[J]. Frontiers in Microbiology, 2019, 10: 1 312.
[3] 陈健, 谭思荣, 黄建辉, 等. 减肥降脂活性成分的研究[J]. 现代生物医学进展, 2014(2): 361-363, 376.
[4] VIJAIMOHAN K, JAINU M, SABITHA K E, et al. Beneficial effects of alpha linolenic acid rich flaxseed oil on growth performance and hepatic cholesterol metabolism in high fat diet fed rats[J]. Life Sciences, 2006, 79(5): 448-454.
[5] 张瑞, 吕梅霞, 吾布力卡司木·艾克拜尔, 等. 鹰嘴豆膳食纤维对高脂血症大鼠脂代谢的改善作用[J]. 现代食品科技, 2018, 34(10): 15-21.
[6] GMEZ-ORDEZ E, JIMNEZ-ESCRIG A, RUPREZ P. Dietary fibre and physicochemical properties of several edible seaweeds from the northwestern Spanish coast[J]. Food Research International, 2010, 43(9): 2 289-2 294.
[7] 李晓红, 张博坤, 刘阳. 亚麻籽油超临界萃取及组成成分分析[J]. 食品安全导刊, 2016(18): 126-127.
[8] 律星光. 亚麻籽油: 食用油中的“液体黄金”[J]. 财经界, 2014(28): 54-55.
[9] 周岚. 膳食纤维[J]. 肿瘤代谢与营养电子杂志, 2016, 3(1): 18-23.
[10] 王言. 膳食纤维减肥功效的原理研究[J]. 饮食科学, 2019(6): 193.
[11] 董吉林, 朱莹莹, 李林, 等. 燕麦膳食纤维对食源性肥胖小鼠降脂减肥作用研究[J]. 中国粮油学报, 2015, 30(9): 24-29.
[12] 徐田辉, 朱仁威, 黄亮, 等. 低温冷冻—超微粉碎洋蓟膳食纤维对肥胖小鼠减肥作用的研究[J]. 中国粮油学报, 2021, 36(4): 96-102.
[13] 吕金顺, 徐继明. 马铃薯膳食纤维对胆固醇的吸附性能及动力学研究[J]. 食品科学, 2006, 27(6): 55-58.
[14] 郭增旺, 马萍, 刁静静, 等. 超微型大豆皮水不溶性膳食纤维理化及吸附特性[J]. 食品科学, 2018, 39(5): 106-112.
[15] MUNAKATA A, IWANE S, TODATE M, et al. Effects of dietary fiber on gastrointestinal transit time, fecal properties and fat absorption in rats[J]. The Tohoku Journal of Experimental Medicine, 1995, 176(4): 227-238.
[16] HILLEMEIER C. An overview of the effects of dietary fiber on gastrointestinal transit[J]. Pediatrics, 1995, 96(5): 997-999.
[17] CHEN J, JIANG Y, LIANG Y, et al. DPA n-3, DPA n-6 and DHA improve lipoprotein profiles and aortic function in hamsters fed a high cholesterol diet[J]. Atherosclerosis, 2012, 221(2): 397-404.
[18] SU J, MA C, LIU C, et al. Hypolipidemic activity of peony seed oil rich in α-linolenic, is mediated through inhibition of lipogenesis and upregulation of fatty acid β-oxidation[J]. Journal of Food Science, 2016, 81(4): H1001-H1009.