•  
  •  
 

Abstract

Objective: To establish a rapid method for the determination of stem content in finished tobacco by near infrared spectroscopy. Methods: The finished tobacco mixed with different proportion of stem silk (5%, 8%, 11% and 14%) was used as the test object. The near infrared spectrum information of pure stem silk, pure leaf silk and tobacco mixed with different proportion of stem silk was collected, respectively. Orthogonal Partial Least Squares Discrimination Analysis (OPLS-DA) was used to identify the overall difference of the near infrared spectral information of the above three kinds of samples. Variable Importance for the Projection (VIP) feature spectrum and full spectrum were used to establish linear non-negative regression models for stem silk samples of different proportions, respectively, and the accuracy and stability of the prediction models were evaluated. Results: ① The OPLS-DA pattern recognition analysis showed that there was a great difference in the overall NIR information of the three kinds of samples. ② Based on the VIP value greater than 1, the spectral wave number range was 4 000~4 165, 4 582~4 609 and 4 612~5 264 cm-1. Wavelength range with large variance: 4 000~6 100 and 6 900~7 500 cm-1. ③ The accuracy and stability of the prediction model established by the variance spectrum screening wavelength variable were superior to VIP algorithm and superior to the full wavelength variable. Conclusion: The method of NIR combined with linear non-negative regression coefficient regression for the rapid determination of the content of stem in finished tobacco has good stability and accuracy.

Publication Date

11-28-2021

First Page

188

Last Page

192

DOI

10.13652/j.issn.1003-5788.2021.11.033

References

[1] 胡立中, 张胜军, 余小平, 等. 均匀设计-PLS-NIR法预测卷烟配方烟丝中梗丝及薄片丝含量[J]. 中国烟草学报, 2010, 16(2): 26-30.
[2] 刘晓萍, 李斌, 于川芳, 等. 基于近红外光谱的卷烟配方结构识别[J]. 烟草科技, 2006(10): 16-18, 27.
[3] 范红梅, 喻赛波, 谭海风, 等. 不同梗丝微观结构和燃烧特性差异及其对卷烟的影响[J]. 烟草科技, 2018, 51(8): 53-60.
[4] 丁美宙, 刘欢, 刘强, 等. 梗丝形态对细支卷烟加工及综合质量的影响[J]. 食品与机械, 2017, 33(9): 197-202.
[5] 金哲, 朴永革, 黄树永, 等. 3种梗丝不同掺配比例对卷烟质量的影响[J]. 烟草科技, 2012(12): 5-8, 21.
[6] 李晓, 纪晓楠, 姚二民, 等. 烟用梗丝加工工艺研究进展[J]. 贵州农业科学, 2013, 41(8): 182-186.
[7] 李斌, 蔡佳校, 何邦华, 等. 一种基于热分析技术测定烟丝中梗丝含量的方法: CN107271312B[P]. 2019-06-21.
[8] 祁林, 唐习书, 王仕宏, 等. 利用色差法测定配方烟丝中的梗丝含量[J]. 云南农业大学学报(自然科学), 2020, 35(6): 1 023-1 028.
[9] 赵科文, 陈实, 蒋浩, 等. 基于近红外光谱技术的烟丝掺配均匀度测定[J]. 食品与机械, 2020, 36(11): 183-188.
[10] 徐安传, 胡巍耀, 王超, 等. 应用近红外技术直接检测烟丝常规化学成分的研究[J]. 激光与红外, 2012, 42(4): 393-398.
[11] 李瑞丽, 刘玉叶, 李文伟, 等. 利用近红外光谱技术快速检测配方烟丝掺配均匀性[J]. 食品与机械, 2019, 35(5): 83-87.
[12] 方开泰, 贺曙东. 含有线性约束及线性非负回归系数的回归模型[J]. 计算数学, 1985, 7(3): 237-246.
[13] 李雪莹, 束茹欣, 栾丽丽, 等. 近红外光谱结合线性非负回归系数回归法(配方回归)解析混合样品的组成比例[J]. 光谱学与光谱分析2016, 36(4): 63-67.
[14] 云南省质量技术监督局. 烟草及烟草制品 主要化学成分指标的测定 近红外漫反射光谱法: DB53/T 497—2013[S]. 北京: 中国标准出版社, 2015: 3-4.
[15] 邝格灵, 李树, 宁甜甜, 等. 基于GC-MS 指纹图谱和多元统计学区分四川保宁醋和山西老陈醋的挥发性差异代谢产物[J]. 食品科学, 2020, 41(16): 227-232.
[16] 王俊, 许多宽, 肖勇, 等. 基于化学指标的烟叶产区正交偏最小二乘判别分析[J]. 中国烟草科学, 2017(1): 91-96.
[17] 刘旭, 王耀峰, 余广宏, 等. 高温介导N基因对TMV免疫丧失的代谢轮廓分析[J]. 中国烟草学报, 2016, 22(2): 84-92.
[18] 颜鸿飞, 彭争光, 李蓉娟, 等. GC-TOF MS结合化学计量学用于安化黑茶的识别[J]. 食品与机械, 2017, 33(8): 34-37, 65.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.