Abstract
The research progress in aptasensors for the detection of kanamycin residues in animal-derived foods was summarized. The principles of the colorimetric, fluorescent, electrochemical methods, and surface-enhanced raman scattering and so on were outlined. Then the advantages and drawbacks of the above detection methods, and aptamer sequences used were summarized. Moreover, the development of aptasensors for kanamycin detection was prospected.
Publication Date
12-28-2021
First Page
188
Last Page
196
DOI
10.13652/j.issn.1003-5788.2021.12.031
Recommended Citation
Jing-yi, MA; Bing, TIAN; Xin, WANG; and Xiao-qi, TAO
(2021)
"Research progress in aptasensors for the detection of kanamycin residues in animal-derived foods,"
Food and Machinery: Vol. 37:
Iss.
12, Article 30.
DOI: 10.13652/j.issn.1003-5788.2021.12.031
Available at:
https://www.ifoodmm.cn/journal/vol37/iss12/30
References
[1] 许媛媛. 一种基于分析物保护的银纳米颗粒和核酸适配体选择机制的卡那霉素比色检测方法[C]// 中国畜牧兽医学会兽医公共卫生学分会第六次学术研讨会论文集. 乌鲁木齐: 中国畜牧兽医学会兽医公共卫生学分会, 2018: 188.
[2] 关奎奎, 谭敏, 汪露, 等. 患病牦牛和藏猪源沙门氏菌对氨基糖苷类、喹诺酮类和β-内酰胺类药物敏感性试验[J/OL]. 中国动物传染病学报. (2021-04-27) [2021-08-10]. http://kns.cnki.net/kcms/detail/31.2031.s.20210427.1038.020.html.
[3] KUMARI Neelam, SINGH Snehlata, KUMARI Vandana, et al. Ouabain potentiates the antimicrobial activity of aminoglycosides against staphylococcus aureus[J]. BMC Complementary and Alternative Medicine, 2019, 19(1): 119.
[4] SATHYA Sadhasivam, LIM Yong-taik, PARTHASARATHI Shanmugam. Fabrication of drug-loaded calcium phosphate nanoparticles: An investigation of microbial toxicity[J/OL]. Journal of Cluster Science. (2021-07-06) [2021-08-10]. doi:10.1007/S10876-021-02104-6.
[5] 屠春燕. 基于适配体的食品中抗生素残留分析[D]. 金华: 浙江师范大学, 2019: 2-3.
[6] KOVACIK Anton, TVRDA Eva, JAMBOR Tomas, et al. Cytotoxic effect of aminoglycoside antibiotics on the mammalian cell lines[J]. Journal of Environmental Science and Health (Part A), 2020, 56(1): 1-8.
[7] 李锦利. “速成鸡”与食品安全[J]. 河南科技, 2014(24): 186-187.
[8] MUSTAFA O C. Aptamer-based ellipsometric sensor for ultrasensitive determination of aminoglycoside group antibiotics from dairy products[J]. Journal of the Science of Food and Agriculture, 2020, 100(8): 3 386-3 393.
[9] ZHANG Xing-ping, WANG Jiu-jun, WU Qing-hua, et al. Determination of kanamycin by high performance liquid chromatography[J]. Molecules, 2019, 24(10): 1 902.
[10] ACAROZ U, INCE S, ARSLAN-ACAROZ D, et al. Determination of kanamycin residue in anatolian buffalo milk by LC-MS/MS[J]. Kafkas Universitesi Veteriner Fakultesi Dergisi, 2020, 26(1): 97-102.
[11] 马凯, 蔡芳叶, 黄永桥, 等. 超高效液相色谱—串联质谱法检测蜂蜜中九种氨基糖苷类药物残留[J]. 食品与发酵工业, 2020, 46(18): 203-208.
[12] 张娟. 基于适配体的卡那霉素检测方法研究及应用[D]. 无锡: 江南大学, 2014: 2-3.
[13] 王爱萍, 孙换平, 刘燕凯, 等. 卡那霉素单克隆抗体的研制及ELISA检测方法的建立[J]. 郑州大学学报(理学版), 2019, 51(3): 109-114.
[14] 陈婷婷, 王鑫, 陶晓奇. 基于特异性识别生物探针检测食品中雌激素残留研究进展[J]. 食品与机械, 2020, 36(4): 221-225.
[15] 王鑫, 刘河冰, 陶晓奇. 基于核酸适配体检测动物性食品中氯霉素残留的研究进展[J]. 食品与发酵工业, 2019, 45(18): 254-262.
[16] 张亚丽, 牛立沙, 赵丽敏, 等. 核酸适体在乳及乳制品检测中的应用[J]. 乳业科学与技术, 2020, 43(5): 43-48.
[17] 高林晨萌, 叶华, 黄圣博, 等. 核酸适配体在食品危害物多靶标检测中的应用进展[J]. 食品与机械, 2021, 37(4): 217-225.
[18] ZHOU Nan-di, ZHANG Juan, TIAN Ya-ping. Aptamer-based spectrophotometric detection of kanamycin in milk[J]. Analytical Methods, 2014, 6(5): 1 569-1 574.
[19] 张彩艳, 冯荣荣, 李晓霞. 金纳米粒子比色法检测卡那霉素的研究[J]. 分析科学学报, 2018, 34(3): 372-376.
[20] LI Jing-wen, LIU Yong-ming, LIN Hao, et al. Label-free exonuclease I-assisted signal amplification colorimetric sensor for highly sensitive detection of kanamycin[J]. Food Chemistry, 2021, 347: 128988.
[21] TANG Yue, HU Yang, ZHOU Pei, et al. Colorimetric detection of kanamycin residue in foods based on the aptamer-enhanced peroxidase-mimicking activity of layered WS2 nanosheets[J]. Journal of Agricultural and Food Chemistry, 2021, 69(9): 2 884-2 893.
[22] LIU Mei, YANG Zong-qi, LI Bao-xin, et al. Aptamer biorecognition-triggered hairpin switch and nicking enzyme assisted signal amplification for ultrasensitive colorimetric bioassay of kanamycin in milk[J]. Food Chemistry, 2021, 339: 128059.
[23] CHEN Zhi-chao, XIONG Feng, YU Ai-min, et al. Aptamer biorecognition-triggered DNAzyme liberation and Exo III-assisted target recycling for ultrasensitive homogeneous colorimetric bioassay of kanamycin antibiotic[J]. Chemical Communications, 2019, 55(27): 3 959-3 962.
[24] DENG Jian-kang, LIU Ya-qing, LIN Xiao-dong, et al. A ratiometric fluorescent biosensor based on cascaded amplification strategy for ultrasensitive detection of kanamycin[J]. Sensors and Actuators B-Chemical, 2018, 273: 1 495-1 500.
[25] HA Na-reum, JUNG In-pil, LA Im-joung, et al. Ultra-sensitive detection of kanamycin for food safety using a reduced graphene oxide-based fluorescent aptasensor[J]. Scientific Reports, 2017, 7(1): 40305.
[26] YANG Hua-lin, WU Qing-hua, SU Dong-xiao, et al. A label-free and turn-on fluorescence strategy for kanamycin detection based on the NMM/G-quadruplex structure[J]. Analytical Sciences, 2017, 33(2): 133-135.
[27] ZHOU Wen-jiao, XU Lin, JIANG Bing-ying. Target-initiated autonomous synthesis of metal-ion dependent DNAzymes for label-free and amplified fluorescence detection of kanamycin in milk samples[J]. Analytica Chimica Acta, 2021, 1148: 238195.
[28] KULIKOVA T, GORBATCHUK V, STOIKOV I, et al. Impedimetric determination of kanamycin in milk with aprasensor based on carbon black-oligolactide composite[J]. Sensors, 2020, 20(17): 4 738.
[29] SHARMA A, ISTAMBOULIE G, HAYAT A, et al. Disposable and portable aptamer functionalized impedimetric sensor for detection of kanamycin residue in milk sample[J]. Sensors and Actuators B-Chemical, 2017, 245: 507-515.
[30] YAO Xin, SHEN Jin-hui, LIU Qing-yan, et al. A novel electrochemical aptasensor for the sensitive detection of kanamycin based on UiO-66-NH2/MCA/MWCNT@rGONR nanocomposites[J]. Analytical Methods, 2020, 12(41): 4 967-4 976.
[31] TIAN Liang, ZHANG Yi, WANG Liu-bo, et al. Ratiometric dual signal-enhancing-based electrochemical biosensor for ultrasensi-tive kanamycin detection[J]. ACS Applied Materials & Interfaces, 2020, 12(47): 52 713-52 720.
[32] CHENG Shu-ting, ZHANG Hui, HUANG Jing-cheng, et al. Highly sensitive electrochemiluminescence aptasensor based on dual-signal amplification strategy for kanamycin detection[J]. Science of the Total Environment, 2020, 737: 139785.
[33] JIANG Ying-fen, SUN Da-wen, PU Hong-bin, et al. Ultrasensitive analysis of kanamycin residue in milk by SERS-based aptasensor[J]. Talanta, 2019, 197: 151-158.
[34] LIU Jing, ZENG Jing-yi, TIAN Ya-ping, et al. An aptamer and functionalized nanoparticle-based strip biosensor for on-site detection of kanamycin in food samples[J]. Analyst, 2018, 143(1): 182-189.
[35] ZHOU Jiao-jiao, LI Yu-qing, WANG Wen-jing, et al. Kanamycin adsorption on gold nanoparticles dominates its label-free colorimetric sensing with its aptamer[J]. Langmuir, 2020, 36(39): 11 490-11 498.
[36] 邹雪梅, 周佳伟, 宋尚红, 等. 寡核苷酸适配体的筛选及在农兽药残留检测中的应用[J]. 分析化学, 2019, 47(4): 488-499.
[37] ZHANG Yong, HU Yun, DENG Sha, et al. Engineering multivalence aptamer probes for amplified and label-free detection of antibiotics in aquatic products[J]. Journal of Agricultural and Food Chemistry, 2020, 68(8): 2 554-2 561.
[38] 楚华琴, 卢云峰. 功能化纳米材料的制备及在食品安全检测中的应用研究进展[J]. 分析化学, 2010, 38(3): 442-448.
[39] 张志伟, 叶泰, 徐斐, 等. 核酸修饰的金纳米粒子用于分光光度法检测卡那霉素[J]. 分析试验室, 2020, 39(1): 44-47.
[40] 吴亚, 徐智辉, 张彪, 等. 核酸适配体光学生物传感器在卡那霉素检测中的研究进展[J]. 生物技术通报, 2020, 36(1): 193-201.
[41] LUAN Yun-xia, WANG Nan, LI Cheng, et al. Advances in the application of aptamer biosensors to the detection of aminoglycoside antibiotics[J]. Antibiotics, 2020, 9(11): 787.
[42] 李芙蓉, 向发椿, 曹丽萍, 等. 纳米酶在食品检测中的应用研究进展[J/OL]. 食品科学. (2021-02-05) [2021-07-24]. http://kns.cnki.net/kcms/detail/11.2206.ts.20210205.1437.008.html.
[43] TAO Xiao-qi, WANG Xin, LIU Bi-wu, et al. Conjugation of antibodies and aptamers on nanozymes for developing biosensors[J]. Biosensors and Bioelectronics, 2020, 168: 112537.
[44] 吴迪, 高伟哲. 食品安全检测中化学检测技术的应用探究[J]. 食品安全导刊, 2020(36): 184, 186.
[45] 段雨晴. 基于电化学传感的卡那霉素及microRNA痕量检测新方法研究[D]. 成都: 成都大学, 2020: 4-6.
[46] 李凤琴, 俞志刚, 韩贤达, 等. 检测牛奶和水中卡那霉素残留物的电化学适配体传感器研究进展[J]. 分析科学学报, 2019, 35(4): 514-520.
[47] 郑瑞娟, 钟坚海, 郎小玲, 等. 过硫酸根电致化学发光及用于抗坏血酸的检测[J]. 化学研究与应用, 2016, 28(10): 1 405-1 409.
[48] 朱丹, 李强强, 逄秀梅, 等. 阻抗光谱在电化学生物传感器中的应用[J]. 化学传感器, 2016, 36(1): 42-47.
[49] 田润. 基于DNA信号放大技术的适配体传感器用于抗生素检测研究[D]. 上海: 上海海洋大学, 2020: 30-42.
[50] 杨德红, 张雷蕾, 卢诗扬, 等. 拉曼光谱技术在农产品药物残留检测中的应用[J]. 食品安全质量检测学报, 2020, 11(23): 8 836-8 843.
[51] SUN Yue, LU Jian-zhong. Chemiluminescence-based aptasensors for various target analytes[J]. Luminescence, 2018, 33(18): 1 298-1 305.