•  
  •  
 

Abstract

This article reviews the principle and classification of molecularly imprinted sensors (MIS), focuses on the research results and application status of MIS in mycotoxin detection, and provides reference for better application of MIS to its future development direction.

Publication Date

12-28-2021

First Page

197

Last Page

201

DOI

10.13652/j.issn.1003-5788.2021.12.032

References

[1] 陈鑫璐, 邱月, 张建友, 等. 国内外谷物中多种真菌毒素限量和同步检测标准及方法研究进展[J]. 中国粮油学报. (2021-04-20) [2021-06-18]. https://kns.cnki.net/kcms/detail/11.2864.TS.20210420.1742.006.html.
[2] 袁航, 丁同英. 食品中主要真菌毒素检测方法研究进展[J]. 食品与机械, 2020, 36(12): 203-206.
[3] TURNER N W, SUBRAHMANYAM S, PILETSKY S A. Analytical methods for determination of mycotoxins: A review[J]. Analytica Chimica Acta, 2009, 632(2): 168-180.
[4] 胡元斌, 许艳霞, 王达能, 等. 超导量点—免疫荧光法快速测定粮食中黄曲霉毒素B1的方法验证[J]. 食品与机械, 2020, 36(1): 84-87.
[5] 马珍珍, 何金兴, 赵涛, 等. 基于皮克林乳液聚合四环素磁性分子印迹—生物炭微球的研制[J]. 食品与机械, 2020, 36(5): 70-75.
[6] KARASEVA N A, PLUHAR B, BELIAEVA E A, et al. Synthesis and application of molecularly imprinted polymers for trypsin piezoelectric sensors[J]. Sens Actuator B-Chem, 2019, 280: 272-279.
[7] 王强, 杜洪振, 韩格, 等. 分子印迹传感器在肉品安全检测中的应用进展[J]. 食品科学. (2021-05-31) [2021-07-02]. https://kns.cnki.net/kcms/detail/11.2206.TS.20210531.1333.010.html.
[8] 韩爽, 丁雨欣, 冷秋雪, 等. 分子印迹电化学传感器在食品检测中的研究进展[J]. 食品与机械, 2021, 37(2): 205-210.
[9] UZUN L, TURNER A P. Molecularly-imprinted polymer sensors: Realising their potential[J]. Biosensors and Bioelectronics, 2016, 76: 131-144.
[10] CRAPNELL R D, HUDSON A, FOSTER C W, et al. Recent advances in electrosynthesized molecularly imprinted polymer sensing platforms for bioanalyte detection[J]. Sensors, 2019, 19(5): 1 204.
[11] CHEN Ling-xin, WANG Xiao-yan, LU Wen-hui, et al. Molecular imprinting: Perspectives and applications[J]. Chemical Society Reviews, 2016, 45(8): 2 137-2 211.
[12] CAPOFERRI D, LVAREZ-DIDUK R, DEL CARLO M, et al. Electrochromic molecular imprinting sensor for visual and smartphone-based detections[J]. Analytical chemistry, 2018, 90(9): 5 850-5 856.
[13] PACHECO J G, CASTRO M, MACHADO S, et al. Molecularly imprinted electrochemical sensor for ochratoxin A detection in food samples[J]. Sensors and Actuators B: Chemical, 2015, 215: 107-112.
[14] GUO Wei, PI Fu-wei, ZHANG Hong-xia, et al. A novel molecularly imprinted electrochemical sensor modified with carbon dots, chitosan, gold nanoparticles for the determination of patulin[J]. Biosensors and Bioelectronics, 2017, 98: 299-304.
[15] BEITOLLAHI H, MOHAMMADI S Z, SAFAEI M, et al. Applications of electrochemical sensors and biosensors based on modified screen-printed electrodes: A review[J]. Analytical Methods, 2020, 12(12): 1 547-1 560.
[16] HAUPT K, MOSBACH K. Molecularly imprinted polymers and their use in biomimetic sensors[J]. Chemical Reviews, 2000, 100(7): 2 495-2 504.
[17] SCHELLER F W, ZHANG X, YARMAN A, et al. Molecularly imprinted polymer-based electrochemical sensors for biopolymers[J]. Current Opinion in Electrochemistry, 2019, 14: 53-59.
[18] WANG Yan-ying, CHENG Jing, LIU Xin, et al. C3N4 nanosheets/metal-organic framework wrapped with molecularly imprinted polymer sensor: Fabrication, characterization, and electrochemical detection of furosemide[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(12): 16 847-16 858.
[19] XIA Yuan-yuan, ZHAO Fa-qiong, ZENG Bai-zhao. A molecularly imprinted copolymer based electrochemical sensor for the highly sensitive detection of L-Tryptophan[J]. Talanta, 2020, 206: 120245.
[20] HATAMLUYI B, REZAYI M, BEHESHTI H R, et al. Ultra-sensitive molecularly imprinted electrochemical sensor for patulin detection based on a novel assembling strategy using Au@ Cu-MOF/N-GQDs[J]. Sensors and Actuators B: Chemical, 2020, 318: 128219.
[21] LIU L, HUANG Q, TANVEER Z I, et al. “Turn off-on” fluorescent sensor based on quantum dots and self-assembled porphyrin for rapid detection of ochratoxin A[J]. Sensors and Actuators B: Chemical, 2020, 302: 127212.
[22] SHAO Man-yu, YAO Ming, SAEGER S D, et al. Carbon quantum dots encapsulated molecularly imprinted fluorescence quenching particles for sensitive detection of zearalenone in corn sample[J]. Toxins (Basel), 2018, 10(11): 1-10.
[23] CHOI S W, CHANG H J, LEE N, et al. A surface plasmon resonance sensor for the detection of deoxynivalenol using a molecularly imprinted polymer[J]. Sensors, 2011, 11(9): 8 654-8 664.
[24] TON X A, ACHA V, BONOMI P, et al. A disposable evanescent wave fiber optic sensor coated with a molecularly imprinted polymer as a selective fluorescence probe[J]. Biosensors and Bioelectronics, 2015, 64: 359-366.
[25] WU Long, YAN Heng, LI Guang-hui, et al. Surface-imprinted gold nanoparticle-based surface-enhanced raman scattering for sensitive and specific detection of patulin in food samples[J]. Food Analytical Methods, 2019, 12(7): 1 648-1 657.
[26] ZHU Yuan-yuan, WU Long, YAN Heng, et al. Enzyme induced molecularly imprinted polymer on SERS substrate for ultrasensitive detection of patulin[J]. Analytica Chimica Acta, 2020, 1 101: 111-119.
[27] WREN S P, PILETSKY S A, KARIM K, et al. Computational design and fabrication of optical fibre fluorescent chemical probes for the detection of cocaine[J]. Journal of Lightwave Technology, 2015, 33(12): 2 572-2 579.
[28] ZHAO Xue, DU Jie, WU Yong-zhong, et al. Synthesis of highly luminescent POSS-coated CdTe quantum dots and their application in trace Cu2+ detection[J]. Journal of Materials Chemistry A, 2013(38): 11 748-11 753.
[29] SPIEKER E, LIEBERZEIT P A. Molecular imprinting studies for developing QCM-sensors for Bacillus cereus[J]. Procedia Engineering, 2016, 168: 561-564.
[30] 王皓. 展青霉素分子印迹压电传感检测方法的研究[D]. 天津: 天津科技大学, 2015: 9-12.
[31] MOAKE M M, PADILLA-ZAKOUR O I, WOROBO R W. Comprehensive review of patulin control methods in foods[J]. Compr Rev Food Sci Food Saf, 2005, 4(1): 8-21.
[32] BAGHERI N, KHATAEE A, HABIBI B, et al. Mimetic Ag nanoparticle/Zn-based MOF nanocomposite (AgNPs@ZnMOF) capped with molecularly imprinted polymer for the selective detection of patulin[J]. Talanta, 2018, 179: 710-718.
[33] 张文刚. 分子印迹Mn掺杂ZnS量子点磷光法检测苹果汁中的展青霉素[D]. 杨凌: 西北农林科技大学, 2017: 7-11.
[34] GUO Wei, PI Fu-wei, ZHANG Hong-xia, et al. A novel molecularly imprinted electrochemical sensor modified with carbon dots, chitosan, gold nanoparticles for the determination of patulin[J]. Biosens Bioelectron, 2017, 98: 299-304.
[35] HIROTA M, MENTA A B, YONEYAMA K, et al. A major decomposition product, citrinin H2, from citrinin on heating with moisture[J]. Bioscience Biotechnology and Biochemistry, 2002, 66(1): 206-210.
[36] 刘桂洋. 分子印迹压电传感检测桔霉素的研究[D]. 天津: 天津科技大学, 2016: 6-13.
[37] ATAR N, YOLA M L, EREN T. Sensitive determination of citrinin based on molecular imprinted electrochemical sensor[J]. Applied Surface Science, 2016, 362: 315-322.
[38] 舒文祥, 徐炜, 李艳, 等. 胶体金免疫层析法快速检测赭曲霉毒素A的研究[J]. 农产品加工(创新版), 2011(10): 53-56.
[39] 王庆玲. 赭曲霉毒素A电化学发光传感器的制备及其分析应用[D]. 武汉: 湖北大学, 2016: 3-8.
[40] LIN Zheng-yu, CHEN Guo-nan, YANG Lin-lin, et al. Electrochemiluminescence biosensor for ultrasensitive determination of ochratoxin A in corn samples based on aptamer and hyperbranched rolling circle amplification[J]. Biosens Bioelectron, 2015, 70: 268-274.
[41] WANG Qing-ling, ZHANG Hai-qing, WEN Xiu-hua, et al. Solid-state electrochemiluminescence sensor based on RuSi nanoparticles combined with molecularly imprinted polymer for the determination of ochratoxin A[J]. Sens Actuator B-Chem, 2016, 222: 264-269.
[42] 张鹏斐. QuEChERS-高效液相色谱法同时测定植物固体饮料中10种植物毒素[J]. 食品与机械, 2020, 36(6): 93-98.
[43] 江梦娟. 多巴胺电极表面可控聚合和几种电化学传感器的研究[D]. 武汉: 华中师范大学, 2016: 5-10.
[44] WANG Cai-yun, WANG Hao, ZHANG Meng, et al. Molecularly imprinted photoelectrochemical sensor for aflatoxin B1 detection based on organic/inorganic hybrid nanorod arrays[J]. Sens Actuator B-Chem, 2021, 339: 1-9.
[45] LI Ge-yuan, ZHANG Kai, FIZIR M, et al. Rational design, preparation and adsorption study of a magnetic molecularly imprinted polymer using a dummy template and a bifunctional monomer[J]. New Journal of Chemistry, 2017, 41(15): 7 092-7 101.
[46] RADI A E, EISSA A, WAHDAN T. Molecularly imprinted impedimetric sensor for determination of mycotoxin zearalenone[J]. Electroanalysis, 2020, 32(8): 1 788-1 794.
[47] 李宁. 荧光分子印迹传感器快速检测微生物活性及其毒素[D]. 武汉: 华中科技大学, 2017: 3-7.
[48] SERGEYEVA T, YARYNKA D, DUBEY L, et al. Sensor based on molecularly imprinted polymer membranes and smartphone for detection of fusariumcontamination in cereals[J]. Sensors, 2020, 20(15): 1-20.
[49] MUNAWAR H, GARCIA-CRUZ A, MAJEWSKA M, et al. Electrochemical determination of fumonisin B1 using a chemosensor with a recognition unit comprising molecularly imprinted polymer nanoparticles[J]. Sens Actuator B-Chem, 2020, 321: 1-28.
[50] MAO Le-bao, JI Kai-lun, YAO Lin-li, et al. Molecularly imprinted photoelectrochemical sensor for fumonisin B1 based on GO-CdS heterojunction[J]. Biosens Bioelectron, 2019, 127: 57-63.
[51] 张薇. 电化学发光传感器的制备及其对霉菌毒素的分析应用[D]. 武汉: 湖北大学, 2018: 4-8.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.