Abstract
The inhibitory activities and types of polyphenolic compounds on xanthine oxidase and their interactions in the past five years was summarized in this review, and the structure-activity relationship, the structural modification and its development and application of metal complex were also prospected. This will provide some references for the research and development of polyphenolic compounds as lowing uric acid food functional factors and drugs.
Publication Date
2-28-2021
First Page
1
Last Page
8
DOI
10.13652/j.issn.1003-5788.2021.02.001
Recommended Citation
Xin-yue, HONG; Jian-mei, WU; Xiao-qiao, LUO; Kai, LIU; Wei-jie, ZHOU; and Guo-wen, ZHANG
(2021)
"Research progress of inhibitory effects of polyphenolic compounds on xanthine oxidase,"
Food and Machinery: Vol. 37:
Iss.
2, Article 1.
DOI: 10.13652/j.issn.1003-5788.2021.02.001
Available at:
https://www.ifoodmm.cn/journal/vol37/iss2/1
References
[1] 周洁, 孙超, 李飞. 中药活性成分降尿酸作用机制研究进展[J]. 中国药理学通报, 2018, 34(1): 19-22.
[2] KUWABARA M. Hyperuricemia, cardiovascular disease, and hypertension[J]. Pulse, 2016, 3(3/4): 242-252.
[3] 万强, 高艳霞, 吴燕升, 等. 高尿酸血症与心血管疾病关系的研究进展[J]. 中西医结合心脑血管病杂志, 2018, 16(1): 54-56.
[4] PEREZ-RUIZ F, DALBETH N, BARDIN T. A review of uric acid, crystal deposition disease, and gout[J]. Advances in Therapy, 2015, 32(1): 31-41.
[5] ZHAO Mou-ming, ZHU Da-shuai, SUN-WATERHOUSE Dong-xiao, et al. In vitro and in vivo studies on adlay-derived seed extracts: Phenolic profiles, antioxidant activities, serum uric acid suppression, and xanthine oxidase inhibitory effects[J]. Journal of Agricultural and Food Chemistry, 2014, 62(31): 7 771-7 778.
[6] JAMES J T, KARSTEN T, SILKE L, et al. Crystal structures of the active andalloxanthine-inhibited forms of xanthine dehydrogenase from rhodobacter capsulatus[J]. Structure, 2002, 10(1): 115-125.
[7] OKAMOTO K, EGER B T, NISHINO T, et al.An extremely potent inhibitor of xanthine oxidoreductase. Crystal structure of the enzyme-inhibitor complex and mechanism of inhibition[J]. The Journal of Biological Chemistry, 2003, 278(3): 1 848-1 855.
[8] ARELLANO F, SACRISTAN J A. Allopurinol hypersensitivity syndrome: A review[J]. Annals of Pharmacotherapy, 1993, 27(3): 337-343.
[9] OKAMOTO K, MATSUMOTO K, HILLE R, et al. The crystal structure of xanthine oxidoreductase during catalysis: Implications for reaction mechanism and enzyme inhibition[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(21): 7 931-7 936.
[10] YAMAGUCHI Y, MATSUMURA T, ICHIDA K, et al. Human xanthine oxidase changes its substrate specificity to aldehyde oxidase type upon mutation of amino acid residues in the active site: Roles of active site residues in binding and activation of purine substrate[J]. Journal of Biochemistry, 2007, 141(4): 513-524.
[11] ROMANO B, PAGANO E, MONTANARO V, et al. Novel insights into the pharmacology of flavonoids[J]. Phytotherapy Research, 2013, 27(11): 1 588-1 596.
[12] CHEN Xiu-min, TAIT A R, KITTS D D. Flavonoid composition of orange peel and its association with antioxidant and anti-inflammatory activities[J]. Food Chemistry, 2017, 218: 15-21.
[13] 赵静, 秦艳. 左巍, 等. 植物来源的黄酮类化合物抗体的制备和应用研究进展[J/OL]. 食品与发酵工业. [2021-01-08]. https://doi.org10.13995/j.cnki.11-1802/ts.025784.
[14] LIN Su-yun, ZHANG Guo-wen, LIAO Yi-jing, et al. Dietary flavonoids as xanthine oxidase inhibitors: structure-affinity and structure-activity relationships[J]. Journal of Agriculture and Food Chemistry, 2015, 63(35): 7 784-7 794.
[15] 闫家凯. 木犀草素对黄嘌呤氧化酶, α-葡萄糖苷酶抑制机理的探讨[D]. 南昌: 南昌大学, 2014: 15-17.
[16] ORSOLYA R, ANA M, JUDIT H, et al. Flavonoids from cyclopia genistoides and their xanthine oxidase inhibitory activity[J]. Planta Medica, 2016, 82(14): 1 274-1 278.
[17] 马文涛. 黄嘌呤氧化酶、脂氧化酶和环氧化酶抑制剂的筛选及其体外抗肿瘤活性研究[D]. 武汉: 湖北中医药大学, 2016: 7-8.
[18] 郭丙花, 刘小红, 霍立娜, 等. 柑橘属药材乙酸乙酯提取物抑制黄嘌呤氧化酶作用的谱效关系研究[J]. 国际中医中药杂志, 2016, 38(1): 57-62.
[19] ZENG Ni, ZHANG Guo-wen, HU Xing, et al. Inhibition mechanism of baicalein and baicalin on xanthine oxidase and their synergistic effect with allopurinol[J]. Journal of Functional Foods, 2018, 50: 172-182.
[20] 李梦荣. 取代苯甲醛缩氨基硫脲及车前草中黄酮化合物抑制黄嘌呤氧化酶活性研究[D]. 南昌: 南昌大学, 2018.
[21] OU Rong-rong, LIN Lian-zhu, ZHAO Mou-ming, et al. Action mechanisms and interaction of two key xanthine oxidase inhibitors in galangal: Combination of in vitro and in silico molecular docking studies[J]. International Journal of Biological Macromolecules, 2020, 162: 1 526-1 535.
[22] WANG Ya-jie, ZHANG Guo-wen, PAN Jun-hui, et al. Novel insights into the inhibitory mechanism of kaempferol on xanthine oxidase[J]. Journal of Agricultural and Food Chemistry, 2015, 62(2): 526-534.
[23] ZHANG Cen, ZHANG Guo-wen, PAN Jun-hui, et al. Galangin competitively inhibits xanthine oxidase by a ping-pong mechanism[J]. Food Research International, 2016, 89: 152-160.
[24] ZHANG Cen, ZHANG Guo-wen, LIAO Yi-jing, et al. Myricetin inhibits the generation of superoxide anion by reduced form of xanthine oxidase[J]. Food Chemistry, 2017, 221: 1 569-1 577.
[25] 申启荣. 中药黄嘌吟氧化酶抑制剂的筛选及抑制动力学研究[D]. 南昌: 南昌大学, 2015.
[26] 金伟丽. 菝葜中黄嘌呤氧化酶抑制剂的筛选、结构鉴定及其抑制机理初探[D]. 南昌: 江西农业大学, 2018.
[27] 林恋竹, 刘雪梅, 赵谋明. 神秘果树叶提取物降尿酸作用及其有效成分鉴定[J]. 中国食品学报, 2018, 18(1): 270-277.
[28] 王亚杰. 桑色素对酪氨酸酶, 黄嘌呤氧化酶抑制机理的探讨[D]. 南昌: 南昌大学, 2015.
[29] RANJAN A, ZULFA N, UMME B, et al. Standardization and xanthine oxidase inhibitory potential of Zanthoxylum armatum fruits[J]. Journal of Ethnopharmacology, 2018, 230: 1-8.
[30] 陈雨涔, 王莹莹, 杜若童, 等. 槲皮素、芦丁、没食子酸抑制黄嘌呤氧化酶的活性及动力学特性[J]. 现代食品科技, 2020, 36(12): 118-124.
[31] 林苏芸. 白杨素、染料木素对黄嘌呤氧化酶的抑制机理及构效关系研究[D]. 南昌: 南昌大学, 2016.
[32] 史珅, 常伟, 尚小玉, 等. 几种天然产物对黄嘌呤氧化酶的抑制作用[J]. 中国食品学报, 2014, 14(7): 138-143.
[33] 赵守涣, 杨慧, 史冠莹, 等. 响应面法优化三种天然产物对黄嘌呤氧化酶的抑制作用[J]. 食品工业科技, 2018, 39(5): 230-234, 318.
[34] 郭丙花. 草木樨属与柑橘属药材抑制黄嘌呤氧化酶物质基础研究[D]. 青岛: 青岛大学, 2016: 43-47.
[35] LIU Kun, WANG Wei, GUO Bing-hua, et al. Chemical evidence for potent xanthine oxidase inhibitory activity of ethyl acetate extract of Citrus aurantium L. dried immature fruits[J]. Molecules (Basel, Switzerland), 2016, 21(3): 302.
[36] KIM D S, LIM S B. Semi-continuous subcritical water extraction of flavonoids from citrus unshiu peel: Their antioxidant and enzyme inhibitory activities[J]. Antioxidants, 2020, 9(5): 360.
[37] DONG Yi, HUANG Hui-hua, ZHAO Mou-ming, et al. Mechanisms underlying the xanthine oxidase inhibitory effects of dietary flavonoids galangin and pinobanksin[J]. Journal of Functional Foods, 2016, 24: 26-36.
[38] HAIDARI F, RASHIDI M R, ESHRAGHIAN M R. Hypouricemic and antioxidant activities of Allium cepa Lilliaceae and quercetin in normal and hyperuricemic rats[J]. Saudi Medical Journal, 2008, 29: 1 573-1 579.
[39] CHEN C H, CHAN H C, CHU Y T, et al. Antioxidant activity of some plant extracts towards xanthine oxidase, lipoxygenase and tyrosinase[J]. Molecules, 2009, 14(8): 2 947-2 958.
[40] 邹琳, 冯凤琴. 食品中降尿酸活性物质及其作用机理研究进展[J]. 食品工业科技, 2019, 40(13): 352-357, 364.
[41] LIN Lian-zhu, YANG Qing-yun, ZHAO Kun, et al. Identification of the free phenolic profile of Adlay bran by UPLC-QTOF-MS/MS and inhibitory mechanisms of phenolic acids against xanthine oxidase[J]. Food Chemistry, 2018, 253: 108-118.
[42] WAN Yin, WANG Fen, ZOU Bin, et al. Molecular mechanism underlying the ability of caffeic acid to decrease uric acid levels in hyperuricemia rats[J]. Journal of Functional Foods, 2019, 57: 150-156.
[43] URSZULA G D, DARIUSZ D, MICHA S, et al. Mechanism of action and interactions between xanthine oxidase inhibitors derived from natural sources of chlorogenic and ferulic acids[J]. Food Chemistry, 2017, 225: 138-145.
[44] MASUDA T, SHINGA Y, TAKAHASHI C, et al. Identification of a potent xanthine oxidase inhibitor from oxidation of caffeic acid[J]. Free Radical Biology & Medicine, 2014, 69: 300-307.
[45] 孙影. 猫须草酚酸的提取及其对高尿酸血症的影响[D]. 杭州: 浙江工业大学, 2018: 19-20.
[46] 尚雁君, 黄才国, 蒋三好, 等. 迷迭香酸对黄嘌呤氧化酶的抑制作用[J]. 第二军医大学学报, 2006(2): 189-191.
[47] MASUOKA N, NIHEI K, KUBO I. Xanthine oxidase inhibitory activity of alkyl gallates[J]. Molecular Nutrition & Food Research, 2006, 50(8): 725-731.
[48] 张婧妍, 刘亚婷, 唐红进. 天然产物Salvianolic Acid A与黄嘌呤氧化酶相互作用的酶动力学和分子对接研究[J]. 安徽工程大学学报, 2019(3): 1-5, 60.
[49] 杜洪芳, 贾献慧, 赵焕新, 等. 土荆皮化学成分及其抗黄嘌呤氧化酶活性研究[J]. 食品与药品, 2019, 21(6): 444-450.
[50] 金红娜, 宋烨威, 崔卫波, 等. 儿茶素单体对小鼠急性高尿酸血症的作用[J]. 茶叶科学, 2016, 36(4): 347-353.
[51] 金红娜. 儿茶素类单体的降尿酸功效研究[D]. 沈阳: 沈阳农业大学, 2016: 31-32.
[52] TANG Xiao-sheng, TANG Ping, MA Lei, et al. Screening and evaluation of xanthine oxidase inhibitors from gnetum parvifolium in China[J]. Molecules (Basel, Switzerland), 2019, 24(14): 2 671.
[53] LIU Yang, HOU Yu-xue, SI Yue-yue, et al. Isolation, characterization, and xanthine oxidase inhibitory activities of flavonoids from the leaves of Perilla frutescens[J]. Natural Product Research, 2020, 34(18): 2 566-2 572.
[54] 孙永丽, 赵焕新, 白虹. HPLC法体外筛选黄嘌呤氧化酶抑制剂[J]. 药物分析杂志, 2014, 34(8): 1 391-1 396.
[55] 刘雪梅. 具有XOI活性的食源性植物多酚提取物的筛选、降尿酸活性评价及功效因子靶向鉴定[D]. 广州: 华南理工大学, 2019: 77.
[56] 张瑞城, 钟良宝, 梁海琴, 等. 异甘草素对黄嘌呤氧化酶抑制的影响及机制[J]. 中国老年学杂志, 2015, 35(17): 4 757-4 759.
[57] DONG Hao, YANG Xiao-cui, HE Jia-peng, et al. Enhanced antioxidant activity, antibacterial activity and hypoglycemic effect of luteolin by complexation with manganese(II) and its inhibition kinetics on xanthine oxidase[J]. RSC Advances, 2017, 7(84): 53 385-53 395.
[58] 刑志华, 姜婧雯, 王淑静, 等. 芹菜素—钆配合物的合成及其抗小鼠高尿酸血症研究[J]. 中国稀土学报, 2019, 37(1): 114-120.
[59] LIN Su-yun, ZENG Li, ZHANG Guo-wen, et al. Synthesis, characterization and xanthine oxidase inhibition of Cu(II)-chrysin complex[J]. Spectrochimica Acta A, 2017, 178: 71-78.
[60] LIN Su-yun, ZHANG Guo-wen, PAN Jun-hui, et al. Deciphering the inhibitory mechanism of genistein on xanthine oxidase in vitro[J]. Journal of Photochemistry and Photobiology B: Biology, 2015, 153: 463-472.
[61] LIN Su-yun, ZHANG Guo-wen, LIAO Yi-jing, et al. Inhibition of chrysin on xanthine oxidase activity and its inhibition mechanism[J]. International Journal of Biological Macromolecules, 2015, 81: 274-282.
[62] ZHANG Cen, WANG Rui, ZHANG Guo-wen, et al. Mechanistic insights into the inhibition of quercetin on xanthine oxidase[J]. International Journal of Biological Macromolecules, 2018, 112: 405-412.
[63] 王亚杰, 张国文. 桑色素对黄嘌呤氧化酶活性的抑制作用[J]. 食品科学, 2014, 35(13): 143-146.
[64] 李昕卓, 郑丽丽, 艾斌凌, 等. 黄嘌呤氧化酶多酚抑制剂的筛选及其作用机制[J]. 食品研究与开发, 2020, 41(9): 12-19, 97.
[65] 曾霓. 四种黄酮类化合物对黄嘌呤氧化酶的抑制作用及机制研究[D]. 南昌: 南昌大学, 2020: 27-31, 37-41.
[66] WANG Zhi-qiang, KWON S H, HWANG S H, et al. Competitive binding experiments can reduce the false positive results of affinitybased ultrafiltration-HPLC: A case study for identification of potent xanthine oxidase inhibitors from Perilla frutescens extract[J]. Journal of Chromatography B, 2017, 1 048: 30-37.
[67] 叶素梅. 芹菜素对黄嘌呤氧化酶活性的抑制机理研究[J]. 食品研究与开发, 2018, 39(21): 67-71.
[68] YAN Jia-kai, ZHANG Guo-wen, HU Yu-ting, et al. Effect of luteolin on xanthine oxidase: Inhibition kinetics and interaction mechanism merging with docking simulation[J]. Food Chemistry, 2013, 141(4): 3 766-3 773.
[69] 张岑. 黄酮化合物抑制黄嘌呤氧化酶活性的分子机制及其包埋物的理化性质研究[D]. 南昌: 南昌大学, 2017: 33-34.
[70] 李美娟. 苦丁茶冬青化学成分及生物活性研究[D]. 长春: 吉林大学, 2018: 55-59.
[71] 杨清韵. 薏苡仁麸皮游离型多酚分离纯化, 结构鉴定及抗氧化作用机制研究[D]. 广州: 华南理工大学, 2017: 113-118.
[72] 朱大帅. 薏仁中多酚类化合物降尿酸活性及其作用机制研究[D]. 广州: 华南理工大学, 2015: 58-60.
[73] 王雪洁, 林志健, 张冰, 等. 菊苣小分子化合物对黄嘌呤氧化酶抑制作用的分子对接研究[J]. 中国中药杂志, 2015, 40(19): 3 818-3 825.
[74] ZHANG Zi-cheng, WANG Hong-bin, ZHOU Qing, et al. Screening of effective xanthine oxidase inhibitors in dietary anthocyanins from purple sweet potato (Ipomoea batatas L. Cultivar Eshu No.8) and deciphering of the underlying mechanisms in vitro[J]. Journal of Functional Foods, 2017, 36: 102-111.