Abstract
Optimization of ultrasonic enzymatic extraction of total flavonoids from Saussurea involucrata leaves was studied by single factor and response surface experiments. The antioxidant capacity of the total flavonoids extracted from the leaves of S. involucrata was evaluated using the scavenging rate and total reducing power of DPPH·. The results showed that the best technology of total flavonoids from S. involucrata leaves by ultrasonic enzyme method was: adding the crushed leaves of S. involucrata to 30% ethanol solution, with the material liquid ratio 1∶60 (g/mL) and the ultrasonic treatment at 50 ℃, for 12 min. After adjusting the pH to 4.8, with the enzymatic hydrolysis for 66 min under the condition of cellulase concentration 0.40 mg/mL, the yield of total flavonoids was 6.317% under the technology. The total flavonoids extracted from the leaves of S. involucrata had antioxidant capacity, which was positively correlated with the concentration. DPPH· clearance rate reached 71.09% at 0.6 mg/mL, and the total reduction force closed to VC. In conclusion, the extraction of total flavonoids from the S. involucrata leaves by ultrasonic wave enzyme method was feasible and effective, and the extraction rate was high. The total flavonoids extract had better antioxidant capacity.
Publication Date
2-28-2021
First Page
179
Last Page
185
DOI
10.13652/j.issn.1003-5788.2021.02.031
Recommended Citation
De-rong, JI; Song-qi, LIU; Kun-yan, XIONG; Meng, LI; and Ming-hu, HU
(2021)
"Ultrasonic enzymatic extraction of total flavonoids from Saussurea involucrata leaves and its antioxidant capacity analysis,"
Food and Machinery: Vol. 37:
Iss.
2, Article 31.
DOI: 10.13652/j.issn.1003-5788.2021.02.031
Available at:
https://www.ifoodmm.cn/journal/vol37/iss2/31
References
[1] LLR P, SMIDERLE F R, SANTANA-FILHO A P, et al.Yacon fructans (Smallanthus sonchifolius) extraction, characterization and activation of macrophages to phagocyte yeast cells[J]. International Journal of Biological Macromolecules, 2018, 108: 1 074-1 081.
[2] MAURYA A K, VINAYAK M. Improved synergistic anticancer efficacy of quercetin in combination with PI-103, rottlerin, and G0 6983 against MCF-7 and RAW 264.7 cells[J].In Vitro Cellular & Developmental Biology-Animal, 2018, 55(1): 36-44.
[3] JOUNG H, KWON D Y, CHOI J G, et a1. Antibacterial and synergistic effects of Smallanthus sonchifolius leaf extracts against methicillin-resistant Staphylococcus aureus under light intensity[J]. Nat Med, 2010, 64: 212-215.
[4] VALENTOV K, SERSEN F, ULRICHOV J. Radical scavenging and anti-lipoperoxidative activities of Smallanthus sonchifolius leaf extracts[J]. J Agric Food Chem, 2005, 53: 5 577-5 582.
[5] CAROLINA S B, WILFEDO M C, STELLA M H, et a1. Safety assessment of aqueous extract from leaf Smallanthus sonchifolius and its main active lactone, enhydrin[J]. Journal of Ethnopharmacology, 2012, 144: 362-370.
[6] 杜丽娟, 苏秀芳, 黄成银. 余甘子叶总黄酮的超声波法提取工艺优化及其抗氧化能力研究[J]. 食品与机械, 2020, 36(3): 185-189, 193.
[7] DOWER J I, GELEIJNSE J M, GIJSBERS L, et al. Effects of the pure flavonoids epicatechin and quercetin on vascular function and cardiometabolic health: A randomized, double-blind, placebo-controlled, crossover trial[J]. American Journal of Clinical Nutrition, 2015, 101(5): 914-921.
[8] 刘慧, 张春岭, 刘杰超, 等. 超声—果胶酶协同提取山楂类黄酮的工艺优化[J]. 食品与机械, 2016, 32(1): 154-157.
[9] FERRI M, RONDINI G, CALABRETTA M M, et al. White grape pomace extracts, obtained by a sequential enzymatic plus ethanol-based extraction, exert antioxidant, anti-tyrosinase and anti-inflammatory activities[J]. New Biotechnology, 2017, 39: 51-58.
[10] 王英, 张玉刚, 戴洪义. 苹果果皮中类黄酮的超声波辅助提取及稳定性研究[J]. 食品科学, 2011, 32(16): 178-181.
[11] 李辉, 卜晓英, 陈功锡, 等. 超声辅助提取白背三七总黄酮[J]. 食品科学, 2011, 32(14): 144-146.
[12] 李侠, 邹基豪, 王大为. 响应面试验优化超声波—酶法提取绿豆皮黄酮类化合物工艺[J]. 食品科学, 2017, 38(8): 214-220.
[13] 李萌萌, 吕长鑫, 芦宇, 等. 纤维素酶辅助提取红树莓籽黄酮及其对α-葡萄糖苷酶和α-淀粉酶的抑制作用[J]. 中国食品学报, 2017, 17(11): 104-112.
[14] 陈红惠, 刘芳, 沈清清. 雪莲果叶中黄酮的提取工艺优化[J]. 文山学院学报, 2014, 27(6): 6-9.
[15] 陈红惠, 刘芳, 沈清清. 雪莲果叶黄酮的纯化工艺[J]. 食品研究与开发, 2015, 36(21): 45-49.
[16] 朱丽, 马玲龙, 李小爽, 等. 两种黄酮类铜(II)配合物的制备及体外抗氧化活性[J]. 食品工业科技, 2019, 40(4): 57-61, 67.
[17] 任红, 郑少杰, 张小利, 等. 基于不同抗氧化机制的黄酮类化合物构效关系研究进展[J]. 食品工业科技, 2016, 37(2): 384-388.
[18] MONDAL S, PHADKE RR, BADIGANNAVAR A M. Genetic variability for total phenolics, flavonoids and antioxidant activity of testaless seeds of a peanut recombinant inbred line population and identification of their controlling QTLs[J]. Euphytica, 2015, 204(2): 311-321.
[19] LI Jing-en, FAN Song-tao, QIU Zeng-hui, et al. Total flavonoids content, antioxidant and antimicrobial activities of extracts from Mosla chinensis Maxim. cv. Jiangxiangru[J]. LWT-Food Science and Technology, 2015, 64(2): 1 022-1 027.
[20] HE Yan-su, LIN Yong, LI Qing-sheng, et al. The contribution ratio of various characteristic tea compounds in antioxidant capacity by DPPH assay[J]. Journal of Food Biochemistry, 2020(3): 1-10.
[21] 李婉仪, 吉文丽, 李蕊, 等. 响应面优化牡丹籽壳总黄酮超声波提取工艺及抗氧化活性研究[J]. 中国油脂, 2018, 43(4): 121-125.
[22] 秦生华, 李珊, 凌旭彬, 等. 百香果果皮总黄酮的超声波辅助提取工艺优化及其性质研究[J]. 食品工业科技, 2020, 41(17): 153-160, 166.
[23] 符群, 李卉, 王振宇, 等. 减压—超声辅助醇法提取薇菜黄酮及其对抗氧化活性的影响[J]. 现代食品科技, 2018, 34(3): 113-120.
[24] 付晶晶, 肖海芳, 宋元达. 金银花等6种植物提取物总黄酮含量与抗氧化性相关性研究[J]. 食品与机械, 2017, 33(6): 159-163.
[25] 陈红惠, 彭光华. 雪莲果叶酚酸提取物抑菌活性研究[J]. 食品研究与开发, 2011, 32(1): 1-4.