Abstract
This review summarized the sources and structures of plant-derived AFPs, focusing on the objects and mechanisms of action of plant-derived AFPs with different structures, and the application status of plant-derived AFPs in food and crops was summarized, aiming to supply references for further research on AFPs.
Publication Date
2-28-2021
First Page
199
Last Page
204
DOI
10.13652/j.issn.1003-5788.2021.02.034
Recommended Citation
Xiao-mi, WANG; Xin-ran, LV; and Feng-ling, BAI
(2021)
"Research progress of plant-derived antifungal peptides,"
Food and Machinery: Vol. 37:
Iss.
2, Article 34.
DOI: 10.13652/j.issn.1003-5788.2021.02.034
Available at:
https://www.ifoodmm.cn/journal/vol37/iss2/34
References
[1] USDA. Grain, fungal diseases and mycotoxin reference[M]. Washington, DC: United States Grain Inspection, Packers and Stockyards Administration, 2016: 5-12.
[2] MELINI V, MELINI F. Strategies to extend bread and GF bread shelf-life: From sourdough to antimicrobial active packaging and nanotechnology[J]. Fermentation, 2018, 4(9): 1-18.
[3] 张心苑. 抗真菌肽的研究与应用前景[J]. 中兽医学杂志, 2019(1): 79-80.
[4] DIZ M S, CARVALHO A O, RIBEIRO S F F, et al. Characterisation,immunolocalisation and antifungal activity of a lipid transfer protein from chili pepper (Capsicum annuum) seeds with novel α-amylase inhibitory properties[J]. Physiologia Plantarum, 2011, 142(3): 233-246.
[5] LIN Peng, XIA Li-xin, JACK H W, et al. Lipid transfer proteins from Brassica campestris and mung bean surpass mung bean chitiniase exploitability[J]. Journal of Peptide Science, 2007, 13: 642-648.
[6] REGENTE M C, DE LA CANAL L. Purification, characterization and antifungal properties of a lipid-transfer protein from sunflower (Helianthus annuus) seeds[J]. Physiologia Plantarum, 2000, 110: 158-163.
[7] SLAVOKHOTOVA A A, ROGOZHIN E A, MUSOLYAMOV A K, et al. Novel antifungal α-hairpinin peptide from Stellaria media seeds: Structure, biosynthesis, gene structure and evolution[J]. Plant Molecular Biology, 2014, 84(1/2): 189-202.
[8] NOLDE S B, VASSILEVSKI A A, ROGOZHIN E A, et al. Disulfide-stabilized helical hairpin structure and activity of a novel antifungal peptide ecAMP1 from seeds of barnyard grass (Echinochloa crusgalli)[J]. Journal of Biological Chemistry, 2011, 286(28): 25 145-25 153.
[9] SEGURA A, MORENO M, MADUENO F, et al. Snakin-1, a peptide from potato that is active against plant pathogens[J]. Molecular Plant-Microbe Interactions, 1999, 12(1): 16-23.
[10] DANESHMAND F, ZARE-ZARDINI H, EBRAHIMI L. Investigation of the antimicrobial activities of Snakin-Z, a new cationic peptide derived from Zizyphusjujuba fruits[J]. Natural Product Research, 2013, 27(24): 2 292-2 296.
[11] HERBEL V, SCHAFER H, WINK M. Recombinant production of snakin-2 (an antimicrobial peptide from tomato) in E. coli and analysis of its bioactivity[J]. Molecules, 2015, 20(8): 14 889-14 901.
[12] CAMMUE B P, DE BOLLE M F C, TERRAS F R, et al. Isolation and characterization of a novel class of plant antimicrobial peptides form Mirabilis jalapa L. seeds[J]. Journal of Biological Chemistry, 1992, 267(4): 2 228-2 233.
[13] GAO Guang-hua, LIU Wei, DAI Ji-xun, et al. Solution structure of PAFP-S: A new knottin-type antifungal peptide from the seeds of Phytolacca americana[J]. Biochemistry, 2001, 40(37): 10 973-10 978.
[14] BAXER A A, RICHTER V, LAY F T, et al. The tomato defensin TPP3 binds phosphatidylinositol (4,5)-bisphosphate via a conserved dimeric cationic grip conformation to mediate cell lysis[J]. Molecular and Cellular Biology, 2015, 35(11): 1 964-1 978.
[15] THEVISSEN K, DEMELLO T P, XU D, et al. The plant defensin RsAFP2 induces cell wall stress, septinmislocalization and accumulation of ceramides in Candida albicans[J]. Molecular Microbiology, 2012, 84(1): 166-180.
[16] RAMAMOORTHY V, CHOON E B, LI J, et al. Glucosylceramide synthase is essential for alfalfa defensin-mediated growth inhibition but not for pathogenicity of Fusarium gramnearum[J]. Molecular Microbiology, 2007, 66: 771-786.
[17] AERTS A M, FRANCOIS I E, BAMMENS L, et al. Level of M(IP)2C sphingolipid affects plant defensin sensitivity,oxidative stress resistance and chronological life-span in yeast[J]. FFBS Lett, 2006, 580: 1 903-1 907.
[18] VANDERWEERDEN N L, LAY F T, ANDERSON M A. The plant defensin, NaD1, enters the cytoplasm of Fusarium oxysporum hyphae[J]. Journal of Biological Chemistry, 2008, 283(21): 14 445-14 452.
[19] LOBO D S, PEREIRA I B, FRAGEL-MADEIRA L, et al. Antifungal Pisum sativum defensin 1 interacts with Neurospora crassa cyclin F related to the cell cycle[J]. Biochemistry, 2007, 46(4): 987-996.
[20] HUANG Xu, XIE Wei-jun, GONG Zhen-zhen. Characteristics and antifungal activity of a chitin binding protein from Ginkgo biloba[J]. FEBS Letters, 2000, 478(1/2): 123-126.
[21] ODINTSOVA T I, VASSILEVAKI A A, SLAVOKHOTOVA A A, et al. A novel antifungal hevein-type peptide from T riticumkiharae seeds with a unique 10-cysteine motif[J]. FEBS Journal, 2009, 276(15): 4 266-4 275.
[22] HUANG Ren-huai, XIANG Ye, TU Guan-zhong, et al. Solution structure of Eucommia antifungal peptide: A novel structural model distinct with a five-disulfide motif[J]. Biochemistry, 2004, 43(20): 6 005-6 012.
[23] KOO J C, LEE B, YOUNG M E, et al. Pn-AMP1, a plant defense protein, induces actin depolarization in yeasts[J]. Plant Cell Physiol, 2004, 45(11): 1 669-1 680.
[24] TAVEIRA G B, DA MOTTA O V, MACHADO O L T, et al. Thionin-like peptides from Capsicum annuum fruits with high activity against human pathogenic bacteria and yeasts[J]. Biopolymers, 2014, 102(1): 30-39.
[25] TAVEIRAG B, CARVALHO A O, RODRIGUES R, et al. Thionin-like peptide from Capsicum annuum fruits: Mechanism of action and synergism with fluconazole against Candida species[J]. BMC Microbiology, 2016, 16(1): 12.
[26] 吴殷. Ace-AMP1的体外抗真菌功能和应用,以及拟南芥PARP蛋白的生化研究[D]. 上海: 复旦大学, 2012: 1-7.
[27] GONORAZKY A G, REGENTE M C, DELA C. Stress induction and antimicrobial properties of a lipid transfer protein in germinating sunflower seeds[J]. Journal of Plant Physiology, 2005, 162(6): 618-624.
[28] TERRAS F R G, SCHOOFS H M E, DE BBOLLE M F C, et al. Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds[J]. Journal of Biological Chemistry, 1992, 267(22): 15 301-15 309.
[29] KIBA A, SAITOH H, NISHIHARA M, et al. C-terminal domain of a hevein-like protein from Wasabia japonica has potent antimicrobial activity[J]. Plant Cell Physiol, 2003, 44(3): 296-303.
[30] YOKOYAMA S, IIDA Y, KAWASAKI Y, et al. The chitin-binding capability of Cy-AMP1 from cycad is essential to antifungal activity[J]. Journal of Peptide Science, 2009, 15(7): 492-497.
[31] VANDEN Bergh K P B, PROOST P, VAN DAMME J, et al. Five disulfide bridges stabilize a hevein-type antimicrobial peptide from the bark of spindle tree (Euonymus europaeus L.)[J]. FEBS Lett, 2002, 530(1/2/3): 181-185.
[32] DE LUCCA A J, CLEVELAND T E, WEDGE D E. Plant-derived antifungal proteins and peptides[J]. Canadian Journal of Microbiology, 2005, 51(12): 1 001-1 014.
[33] PARISI K, SHAFEE T M A, QUIMBAR P, et al. The evolution, function and mechanisms of action for plant defensins[J]. Seminars in Cell & Developmental Biology, 2018: 7-10.
[34] IBEAS J I, YUN D J, DAMSZ B, et al. Resistance to the plant PR-5 protein osmotin in the model fungus Saccharomyces cerevisiae is mediated by the regulatory effects of SSD1 on cell wall composition[J]. The Plant Journal, 2001, 25(3): 271-280.
[35] 刘怀然, 温赛, 续丹丹. 天然抗菌肽及其在食品工业中的应用[J]. 饲料研究, 2016(14): 5-8.
[36] 刘秀, 郭中坤, 王可洲. 抗菌肽来源、分类方式、生物学活性、作用机制及应用研究进展[J]. 中国医药生物技术, 2016, 11(6): 539-543.
[37] ALFRED R L, PALOMBO E A, PANOZZO J F, et al. The antimicrobial domains of wheat puroindolines are cell-penetrating peptides with possible intracellular mechanisms of action[J]. Plos One, 2013, 8: e75488.
[38] 冯林慧. 大豆蛋白抗菌多肽对黑曲霉的抑菌机制及应用[D]. 济南: 齐鲁工业大学, 2019: 37-45.
[39] 蒋雯, 刘欣, 张增艳. 马铃薯抗菌肽SN1基因的克隆、原核表达及其抑菌活性[J]. 植物遗传资源学报, 2011(2): 286-290.
[40] ZHANG Jin-rui, MARTIN J M, BALIN-KURTI P, et al. The wheat puroindoline genes confer fungal resistance in transgeniccorn[J]. J Phytopathol, 2011, 159(3): 188-190.
[41] CHEN Shuang-chen, LIU Ai-rong, WANG Feng-hua, et al. Combined overexpression of chitinase and defensin genesin transgenic tomato enhances resistance to Botrytis cinerea[J]. Afr J Biotechnol, 2009, 8(20): 5 182-5 188.