Abstract
This review summarized article reviews the preparation and classification of molecularly imprinted electrochemical sensors, as well as the practical application and development of food safety detection, and their development prospects were also prospected.
Publication Date
2-28-2021
First Page
205
Last Page
210
DOI
10.13652/j.issn.1003-5788.2021.02.035
Recommended Citation
Shuang, HAN; Yu-xin, DING; Qiu-xue, LENG; Ai-xin, YAO; Fu, TENG; Shi-li, QIN; Ji-wei, DU; and Xiu-zhi, LIU
(2021)
"Research progress of molecularly imprinted electrochemical sensors in the field of determination in food safety,"
Food and Machinery: Vol. 37:
Iss.
2, Article 35.
DOI: 10.13652/j.issn.1003-5788.2021.02.035
Available at:
https://www.ifoodmm.cn/journal/vol37/iss2/35
References
[1] ZAIDI S A. Utilization of an environmentally-friendly monomer for an efficient and sustainable adrenaline imprinted electrochemical sensor using graphene[J]. Electrochimica Acta, 2018, 274: 370-377.
[2] 李俣珠, 李增威, 曾月, 等. 分子印迹传感器的制备方法与应用进展[J]. 化学世界, 2019, 60(8): 465-475.
[3] 颜朦朦, 金茂俊, 邵华, 等. 基于纳米材料的分子印迹技术研究进展[J]. 分析试验室, 2018, 37(5): 607-613.
[4] 栾崇林, 李铭杰, 李仲谨, 等. 分子印迹电化学传感器的研究进展[J]. 化工进展, 2011(2): 117-122, 134.
[5] LAHCEN A A, ERRAYESS S A, AMINE A. Voltammetric determination of sulfonamides using paste electrodes based on various carbon nanomaterials[J]. Microchim Acta, 2016, 183(7): 2 169-2 176.
[6] DUAN Ding-ding, SI Xiao-jing. DING Ya-ping, et al. A novel molecularly imprinted electrochemical sensor based on double sensitization by MOF/CNTs and Prussian blue for detection of 17β-estradiol[J]. Bioelectrochemistry, 2019, 129: 211-217.
[7] ZHANG Xiao-yan,PENG Yuan,BAI Jia-lei, et al. A novel electrochemical sensor based on electropolymerized molecularly imprinted polymer and gold nanomaterials amplification for estradiol detection[J]. Sensors & Actuators B Chemical, 2014, 200: 69-75.
[8] 王硕, 赵艺杰, 陆旸. 食品安全检测中分子印迹聚合物传感器技术的研究现状及展望[J]. 食品科学技术学报, 2015(4): 5-9.
[9] 刘欣, 孙秀兰, 曹进. 分子印迹技术在食品样品安全分析中的应用[J]. 食品安全质量检测学报, 2020, 11(1): 106-113.
[10] 徐斐, 郭猛, 叶泰, 等. 基于硼亲和策略的分子印迹技术研究进展[J]. 食品与机械, 2019, 35(12): 8-13.
[11] 王慎苓, 潘广彦, 王传刚, 等. 分子印迹技术在兽药残留检测中的应用[J]. 食品科技, 2019, 44(9): 348-351.
[12] YANG Yu-kun, YAN Wen-yan, GUO Cai-xia, et al. Magnetic molecularly imprinted electrochemical sensors: A review[J]. Analytica Chimica Acta, 2020, 1 106: 1-21.
[13] 华彦涛, 徐振林, 王弘, 等. 利巴韦林原位聚合分子印迹电化学传感器的研制[J]. 分析测试学报, 2017, 36(7): 921-924.
[14] 杨霄鸿, 贾明宏, 杨天予, 等. 分子印迹技术在农药残留检测中的应用进展[J]. 食品安全质量检测学报, 2017, 8(2): 462-467.
[15] ZHANG Min, ZHAO Hai-tian, XIE Tian-jiao, et al. Molecularly imprinted polymer on graphene surface for selective and sensitive electrochemical sensing imidacloprid[J]. Sensors and Actuators B-chemical, 2017, 252: 991-1 002.
[16] IMER S, SARRA B, JIMMY N, et al. Molecularly imprinted polymer modified glassy carbon electrodes for the electrochemical analysis of isoproturon in water[J]. Talanta, 2020, 207: 120222.
[17] 韦寿莲, 吴嘉喻, 黄象金, 等. 孔雀石绿分子印迹电化学传感器的制备与应用[J]. 分析化学, 2020, 48(1): 145-152.
[18] GAN Tian, LI Jie-bin, XU Li-ping, et al. Multishell Au@Ag@SiO2 nanorods embedded into a molecularly imprinted polymer as electrochemical sensing platform for quantification of theobromine[J]. Microchimica Acta, 2020, 187(5): 291-301.
[19] WEI Ze-hui, ZHANG Rong-rong, MU Li-na, et al. Fabrication of core-shell sol-gel hybrid molecularly imprinted polymer based on metal-organic framework[J]. European Polymer Journal, 2019, 121: 109301.
[20] 杜晓芳, 李兆周, 陈秀金, 等. 喹诺酮类药物印迹仿生抗体的研制及应用进展[J]. 化工进展, 2020, 39(4): 1 447-1 457.
[21] ALI M, HOSSEINI M R M, NASERI K. Determination of psychotropic drug chlorpromazine using screen printed carbon electrodes modified with novel MIP-MWCNTs nano-composite prepared by suspension polymerization method[J]. Sensors and Actuators B-Chemical, 2019, 288: 356-362.
[22] 刘艳丽, 李小军, 贺晓荣, 等. 分子印迹电化学传感器制备及在蛋白质检测上的应用[J]. 化工进展, 2017, 36(7): 2 533-2 539.
[23] JAOUHARI A E, YAN Lu-yun, ZHU Jin-hua, et al. Enhanced molecular imprinted electrochemical sensor based on zeolitic imidazolate framework/reduced graphene oxide for highly recognition of rutin[J]. Analytica Chimica Acta, 2020, 1 106: 103-114.
[24] 肖维玮, 卢一辰, 熊晓辉. 新型磁性分子印迹电化学传感器对食品中敌草隆的检测[J]. 生物加工过程, 2020, 18(4): 471-477.
[25] 张兴, 尚宏周, 何俊男, 等. 分子印迹技术在电化学中的应用[J]. 化工新型材料, 2019, 47(2): 33-36.
[26] SUN Ling-zhi, SUN Cheng-jun, SUN Xian-xiang. Screening highly selective ionophores for heavy metal ion-selective electrodes and potentiometric sensors[J]. Electrochimica Acta, 2016, 220: 690-698.
[27] ALIZADEH T, NAYERI S, MIRZAEE S, et al. A high performance potentiometric sensor for lactic acid determination based on molecularly imprinted polymer/MWCNTs/PVC nanocomposite film covered carbon rod electrode[J]. Talanta, 2019, 192: 103-111.
[28] TAN Yang, ZHANG Qian, CHEN Tian-e, et al. Facile potentiometric sensing of gallic acid in edible plants based on molecularly imprinted polymer[J]. Journal of Food Science, 2020, 85(8): 2 622- 2 628.
[29] 张洪才, 刘国艳, 商璟, 等. 多壁碳纳米管和分子印迹膜修饰电极检测猪尿液中莱克多巴胺[J]. 分析化学, 2012, 40(1): 95-100.
[30] 王胜碧, 吕瑞红, 徐岚. 基于分子印迹聚合物的水杨酸电导型传感器[J]. 安顺学院学报, 2007(2): 95-98.
[31] 韩贵宾, 陈存广, 孙媛媛, 等. 电流型电化学传感器的研究进展[J]. 科技创新与应用, 2017(23): 195-196.
[32] MOTAHARIAN A, HOSSEINI M, NASERI K, et al. Determination of psychotropic drug chlorpromazine using screen printed carbon electrodes modified with novel MIP-MWCNTs nano-composite prepared by suspension polymerization method[J]. Sensors and Actuators B-chemical, 2019, 288: 356-362.
[33] 周路, 叶光荣, 袁若, 等. 甲磺酸帕珠沙星分子印迹手性电容型传感器[J]. 中国科学(化学), 2007(1): 48-53.
[34] MIAO Jiao-na, LIU An ran, WU Li-na, et al. Magnetic ferroferric oxide and polydopamine molecularly imprinted polymer nanocomposites based electrochemical impedance sensor for the selective separation and sensitive determination of dichlorodiphenyltrichloroethane (DDT)[J]. Analytica Chimica Acta, 2020, 1 095: 82-92.
[35] GUI Ri-jun, JIN Hui, GUO Hui-jun, et al. Recent advances and future prospects in molecularly imprinted polymers-based electrochemical biosensors[J]. Biosensors & Bioelectronics, 2017, 100: 56-70.
[36] ASHLEY J, SHAHBAZI M A, KANT K, et al. Molecularly imprinted polymers for sample preparation and biosensing in food analysis: Progress and perspectives[J]. Biosensors and Bioelectronics, 2017, 91: 606-615.
[37] 马珍珍, 何金兴, 赵涛, 等. 基于皮克林乳液聚合四环素磁性分子印迹—生物炭微球的研制[J]. 食品与机械, 2020, 36(5): 70-75, 94.
[38] 袁河, 肖晓义, 刘佳, 等. 高效液相色谱法测定食用槟榔中苯甲酸、山梨酸和糖精钠的不确定度评定[J]. 食品与机械, 2020, 36(8): 77-81.
[39] 张强. 液质联用技术在食品安全检测中的应用[J]. 食品安全导刊, 2018(36): 107.
[40] 王赛楠, 邓迎春, 高天蓝星, 等. 液相色谱串联质谱法测定保健食品中西布曲明的不确定度[J]. 食品与机械, 2020, 36(4): 91-94.
[41] 周强. 食品安全检测中气相色谱技术的应用[J]. 农家参谋, 2020(14): 262.
[42] 黄永辉. 同位素稀释—气相色谱—质谱法同时测定婴幼儿配方奶粉中8种己二酸酯塑化剂[J]. 食品与机械, 2020, 36(9): 77-81.
[43] 张瑶, 吴龙国, 马桂娟, 等. 气相色谱—串联质谱结合固相萃取技术同时测定番茄和黄瓜中10种杀菌剂[J]. 食品与机械, 2020, 36(7): 67-71.
[44] 闫顺华, 叶青, 韩瑨烜, 等. GC-MS/MS法测定白酒中3种塑化剂含量的不确定度评定[J]. 食品与机械, 2018, 34(12): 43-48, 78.
[45] SUN Yu-feng, GAO Hui-ju, XU Long-hua, et al. Ultrasensitive determination of sulfathiazole using a molecularly imprinted electrochemical sensor with CuS microflowers as an electron transfer probe and Au@COF for signal amplification[J]. Food Chemistry, 2020, 332: 127376.
[46] 郭宣利, 王文廉. 基于金—铜纳米复合粒子修饰的甲硝唑分子印迹传感器的研究[J]. 分析科学学报, 2020, 36(6): 1-6.
[47] YU Wen-long, TANG Yi-wei, SANG Ya-xin, et al. Preparation of a carboxylated single-walled carbon-nanotube-chitosan functional layer and its application to a molecularly imprinted electrochemical sensor to quantify semicarbazide[J]. Food Chemistry, 2020, 333: 127524.
[48] 肖维玮, 卢一辰, 熊晓辉. 新型磁性分子印迹电化学传感器对食品中敌草隆的检测[J]. 生物加工过程, 2020, 18(4): 471-477.
[49] 王志华, 张兵, 张亚芳, 等. 基于多壁碳纳米管增敏的2,4-D二氧化硅凝胶分子印迹电化学传感器的构建[J]. 西北师范大学学报(自然科学版), 2020, 56(3): 62-67.
[50] 梁营芳, 周化岚, 王燕, 等. 表面增强拉曼光谱技术在食品安全检测中的应用[J]. 理化检验(化学分册), 2020, 56(4): 487-496.
[51] 李文进, 刘霞, 李蓉卓, 等. 电化学传感器在农药残留检测中的研究进展[J]. 食品与机械, 2013, 29(4): 241-245.
[52] 陈昱安, 顾丽莉, 师君丽, 等. 西草净分子印迹电化学传感器的制备及应用[J]. 农药学学报, 2020, 22(3): 483-492.
[53] AGHOUTANE Y, DIOUF A, OSTERLUND L, et al. Development of a molecularly imprinted polymer electrochemical sensor and its application for sensitive detection and determination of malathion in olive fruits and oils[J]. Bioelectro Chemistry, 2020, 132: 107404.
[54] 崔荣飞, 赵兴鑫, 田梅, 等. 动物源性食品中非法添加物残留危害及检测技术[J]. 今日畜牧兽医, 2019, 35(12): 1-3.
[55] 程水连, 何建国, 卢桂英, 等. 食品中多组分甜味剂和防腐剂同时快速测定方法的建立[J]. 食品与机械, 2020, 36(1): 88-94.
[56] YIN Zheng-zhi, CHENG Shu-wen, XU Li-bin, et al. Highly sensitive and selective sensor for sunset yellow based on molecularly imprinted polydopamine-coated multi-walled carbon nanotubes[J]. Biosensors and Bioelectronics, 2018, 100: 565-570.
[57] SALVOCOMINO C, RASSAS I, MINOT S, et al. Voltammetric sensor based on molecularly imprinted chitosan-carbon nanotubes decorated with gold nanoparticles nanocomposite deposited on boron-doped diamond electrodes for catechol detection[J]. Materials, 2020, 13(3): 688-699.
[58] ZHENG Lu-fei, ZHANG Chao, MA Jun, et al. Fabrication of a highly sensitive electrochemical sensor based on electropolymerized molecularly imprinted polymer hybrid nanocomposites for the determination of 4-nonylphenol in packaged milk samples[J]. Analytical Biochemistry, 2018, 559: 44-50.
[59] 贾婧. 食品中兽药残留检测技术研究[J]. 食品安全导刊, 2020, 68(9): 173.
[60] 孙兴权, 董振霖, 李一尘, 等. 动物源食品中兽药残留高通量快速分析检测技术[J]. 农业工程学报, 2014, 30(8): 280-292.
[61] YUN Ya-guang, PAN Ming-fei, FANG Guo-zhen, et al. Molecularly imprinted electrodeposition O-aminothiophenol sensor for selective and sensitive determination of amantadine in animal-derived foods[J]. Sensors and Actuators B-chemical, 2017, 238: 32-39.
[62] 于壮壮, 康天放, 鲁理平. 基于金纳米粒子及石墨烯量子点的四环素分子印迹电化学传感器研究[J]. 分析测试学报, 2020, 39(2): 182-189.