Abstract
A crayfish quality detection model using YOLOv4 deep learning algorithm is designed. The algorithm is optimized in terms of network architecture, data processing, and feature extraction. The crayfish image data is collected by video capture and image expansion, and then the data is annotated by LableImage platform. The model is trained under the Darknet framework. By contrast, the final model performance is higher than other common target detection models, and the detection accuracy rate is 97.8%, the average detection time is 37 ms, which proves that the method can effectively detect the quality of crayfish in the production process.
Publication Date
3-28-2021
First Page
120
Last Page
124,194
DOI
10.13652/j.issn.1003-5788.2021.03.023
Recommended Citation
Shu-qing, WANG; Jian-feng, HUANG; Peng-fei, ZHANG; and Juan, WANG
(2021)
"Crayfish quality detection method based on YOLOv4,"
Food and Machinery: Vol. 37:
Iss.
3, Article 23.
DOI: 10.13652/j.issn.1003-5788.2021.03.023
Available at:
https://www.ifoodmm.cn/journal/vol37/iss3/23
References
[1] 陈旭妍. 湖北省小龙虾产业可持续发展研究[D]. 武汉: 华中师范大学, 2019: 34-37.
[2] 胡凯. 潜江小龙虾产业高质量发展研究[D]. 武汉: 武汉轻工大学, 2019: 16-17.
[3] 汤踊, 韩军, 魏文力. 深度学习在输电线路中部件识别与缺陷检测的研究[J]. 电子测量技术, 2018, 41(6): 60-65.
[4] 李妮, 李玉红, 龚光红, 等. 基于深度学习的体系作战效能智能评估及优化[J]. 系统仿真学报, 2020, 32(8): 1 425-1 435.
[5] 赵鹏, 唐英杰, 杨牧. 卷积神经网络在无纺布缺陷分类检测中的应用[J]. 现代纺织技术, 2020, 27(5): 192-196.
[6] 李云鹏, 侯凌燕, 王超. 基于YOLOv3的自动驾驶中运动目标检测[J]. 计算机工程与设计, 2019, 40(4): 1 139-1 144.
[7] 张正伟, 张鑫, 李庆盛. 基于电子舌及一维深度CNN-ELM模型的普洱茶贮藏年限快速检测[J]. 食品与机械, 2020, 36(8): 45-51.
[8] 兰韬, 初侨, 刘文. 基于深度学习的牛肉大理石纹智能分级研究[J]. 食品安全质量检测学报, 2018, 9(5): 1 059-1 064.
[9] 吴爽, 李国建, 介邓飞. 基于深度学习的西瓜可见/近红外光谱可溶性固形物预测模型研究[J]. 食品与机械, 2020, 36(12): 132-135.
[10] 宋超. 基于深度学习的鸡蛋外观缺陷检测算法[D]. 贵阳: 贵州大学, 2017: 37-45.
[11] FAN Shu-xiang, LI Jiang-bo, ZHANG Yun-he, et al. On line detection of defective apples using computer vision system combined with deep learning methods[J]. Journal of Food Engineering, 2020, 286: 110102.
[12] 尹宏鹏, 陈波, 柴毅, 等. 基于视觉的目标检测与跟踪综述[J]. 自动化学报, 2016, 42(10): 1 466-1 489.
[13] 严培培. 基于网络环境的食品分拣视觉检测系统设计[J]. 食品与机械, 2016, 32(10): 108-110.
[14] GIRSHICK R. Fast r-cnn[C]// Proceedings of the IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1 440-1 448.
[15] HE Kai-ming, GKIOXARI G, DOLLR P, et al. Mask r-cnn[C]// Proceedings of the IEEE International Confe-rence on Computer Vision. Venice: IEEE, 2017: 2 961-2 969.
[16] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779-788.
[17] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection. (2020-04-23) [2020-09-16]. https://arxiv.org/abs/ 2004.10934.
[18] REDMON J, FARHADI A. YOLOv3: An incremental improvement[J/OL]. Computer Science. [2020-09-117]. https://arxiv.org/abs/1804.02767.
[19] REN Shao-qing, HE Kai-ming, GIRSHICK R, et al. Faster r-cnn: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1 137-1 149.
[20] TAN Ming-xing, PANG Ruo-ming, LE Q V J A P A. Efficientdet: Scalable and efficient object detection[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2019: 10 778-10 787.
[21] HE Kai-ming, ZHANG Xiang-yu, REN Shao-qing, et al. Deep residual learning for image recognition[C]// IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.