•  
  •  
 

Authors

ZHOU Mi, Hubei Provincial Institute for Food Supervision and Test, Wuhan, Hubei 430075, China; Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan, Hubei 430075, China
HAN Zhi, Hubei Provincial Institute for Food Supervision and Test, Wuhan, Hubei 430075, China; Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan, Hubei 430075, China
ZHU Zheng-wei, Hubei Provincial Institute for Food Supervision and Test, Wuhan, Hubei 430075, China; Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan, Hubei 430075, China
ZHU Song-song, Hubei Provincial Institute for Food Supervision and Test, Wuhan, Hubei 430075, China; Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan, Hubei 430075, China
WANG Hui-xia, Hubei Provincial Institute for Food Supervision and Test, Wuhan, Hubei 430075, China; Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan, Hubei 430075, China
JIANG Feng, Hubei Provincial Institute for Food Supervision and Test, Wuhan, Hubei 430075, China; Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan, Hubei 430075, China
ZHU Qian, Hubei Provincial Institute for Food Supervision and Test, Wuhan, Hubei 430075, China; Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan, Hubei 430075, China

Abstract

Quantitative analysis of total fluorine in tea was established by using 19F quantitative nuclear magnetic resonance combined with the pretreatment method of oxygen bomb combustion. The 19F qNMR method used the signal characteristic of fluoride ion at δ=-119 as the qualitative peak and the signal characteristic of trifluoroacetic acid at δ=-75 as the internal standard peak. The fluorine-containing substances in tea sample was burned by oxygen bomb and converted into inorganic fluorine. Mixed metal chelating agent which included sodium citrate and disodium EDTA was added to eliminate interference and then the absolute content of fluoride ion in tea was determined. The minimum detection concentration of the method is 2.0 μg/mL. The results of the quality control samples were satisfactory. The recovery rate of the actual samples were 96.3%~107.0% and the method repeatability and precision were good. The sample test can be completed within 30 minutes which effectively reduces the analysis time and the measurement result is accurate and reliable by using the method to determine the total fluorine content in tea.

Publication Date

4-28-2021

First Page

58

Last Page

62

DOI

10.13652/j.issn.1003-5788.2021.04.010

References

[1] 高慧敏. 茶多糖对氟离子的吸附特性研究[D]. 武汉: 华中农业大学, 2016: i.
[2] 郭艳芬. 灰化—离子色谱法测定食品中的氟化物[J]. 微量元素与健康研究, 2016, 33(4): 58-59.
[3] ANA L G M, MARIELE S N, ROCHELE S P, et al. A sample preparation method for fluoride detection by potentiometry with ion-selective electrode in medicinal plants[J]. Journal of Fluorine Chemistry, 2020, 231: 109459.
[4] 汤晓佳, 格桑卓嘎, 西洛, 等. 拉萨市儿童饮茶型地氟病流行现状[J]. 中国学校卫生, 2020, 41(4): 573-575.
[5] 刘淑娟, 钟兴刚, 覃事永, 等. 茶叶氟含量现状及控氟措施研究进展[J]. 茶叶通讯, 2016, 43(3): 41-45.
[6] 黄鑫, 宋晓维, 陈玉琼. 茶树吸收富集氟的机制研究进展[J]. 茶叶科学, 2016, 36(6): 551-556.
[7] FUNG K F, ZHANG Z Q, WONG J W C, et al. Fluoride contents in tea and soil from tea plantations and the release of fluoride into tea liquor during infusion [J]. Environmental Pollution, 1999, 104: 197-205.
[8] 蔡荟梅, 彭传燚, 李成林, 等. 三个品种茶树氟富集特性及其在亚细胞中的分布[J]. 中国农业科学, 2013, 46(8): 1 668-1 675.
[9] 孙殿军, 孙玉富. 砖茶含氟综述[J]. 中国地方病学杂志, 2002, 21(6): 515-518.
[10] 阮建云, 杨亚军, 马立峰. 茶叶氟研究进展: 累积特性、含量及安全性评价[J]. 茶叶科学, 2007, 27(1): 1-7.
[11] 马立峰, 石元值, 阮建云, 等. 我国茶叶氟含量状况研究[J]. 农业环境保护, 2002, 21(6): 537-539.
[12] 白学信. 砖茶高氟的原因调查[J]. 茶叶科学, 2000, 20(1): 77-79.
[13] 刘超, 吴方正, 傅柳松, 等. 茶叶中的氟含量及测定方法研究[J]. 农业环境保护, 1998, 17(3): 132-135.
[14] SHU W S, ZHANG Z Q, LAN C Y, et al. Fluoride and aluminium concentrations of tea plants and tea products from Sichuan province, PR China[J]. Chemosphere, 2003, 52: 1 475-1 482.
[15] 刘晓静. 茶园土壤—茶树—茶汤系统中氟和铝的迁移、转化特征及饮茶型氟中毒的防治探索[D]. 贵阳: 中国科学院地球化学研究所, 2006: 41.
[16] 陈小强, 黄奕, 祈勇刚, 等. 一种利用超微青砖茶粉制作的奶茶固体饮料及其制备方法: 11187477.0[P]. 2017-05-24.
[17] 中华人民共和国卫生部. 砖茶含氟量: GB 19965—2005[S]. 北京: 中国标准出版社, 2006: 1-3.
[18] 朱晓静, 房峰祥, 张月华, 等. 茶叶及茶多糖中氟测定前处理方法的比较研究[J]. 茶叶科学, 2015, 35(2): 145-150.
[19] 章骅, 陈旭艳, 彭杨思. 氧弹燃烧—离子色谱法测定茶叶中的氟[J]. 食品研究与开发, 2019, 40(2): 172-176.
[20] 蔡荟梅, 侯如燕, 郜红建, 等. 氧弹燃烧—离子色谱法测定茶叶中氟的含量[J]. 茶叶科学, 2009, 29(3): 225-230.
[21] LCIA P S P, MENNO S, ROBERT V, et al. Quantitative analysis of amygdalin and prunasin in Prunus serotina Ehrh. using 1H-NMR spectroscopy[J]. Phytochem Anal, 2014, 25: 122-126.
[22] CHARLOTTE S, JOSE G N, JAMES B M, et al. Universal quantitative NMR analysis of complex natural samples[J]. Current Opinion in Biotechnology, 2014, 25: 51-59.
[23] SHEN Shi, YANG Xing, SHI Ya-qin. Application of quantitative NMR for purity determination of standard ACE inhibitors[J]. Journal of Pharmaceutical and Biomedical Analysis, 2015, 114: 190-199.
[24] 张伟, 黄挺, 徐蓓, 等. 苏丹红Ⅰ、Ⅱ标准物质纯度的核磁共振法测定[J]. 分析测试学报, 2010, 29(2): 194-198.
[25] GREGORY K W, SHAILENDRA K. Expanding the analytical toolbox: Pharmaceutical application of quantitative NMR[J]. Anal Chem, 2014, 86: 11 474-11 480.
[26] 王强, 汪茂田, 张志权. 核磁共振法定量测定替米考星含量[J]. 分析测试学报, 2003, 22(6): 101-103.
[27] 李临生, 李燕, 兰云军, 等. 19F NMR的特点[J]. 波谱学杂志, 2007, 24(3): 353-364.
[28] 华俊杰, 朱海菲, 李育. 19F核磁共振定量法测定含氟漱口液中氟化钠的含量[J]. 药学实践杂志, 2019, 37(6): 518-520.
[29] 宋政, 周陶鸿, 胡家勇, 等. 面制品及糕点中含铝食品添加剂的测定[J]. 中国食品添加剂, 2020, 31(4): 142-147.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.