•  
  •  
 

Abstract

Aiming at the problem of foodborne pathogenic bacteria detection process is time-consuming, composed a application highlights like technology obtained 12,18,24 h 3 phase 5 kinds of pathogenic bacteria [Staphylococcus aureus (S. aureus), Listeria monocytogenes (LM), Diarrheagenic e.coli (DEC), Salmonella enteritidis (SE) and Shigella spp flexneri (S. flexneri)] of hyperspectral image, using successive projections algorithm (SPA) in combination with relevant analysis (CA) to extract various growing pathogenic bacteria sensitive wave bands and established the least squares support vector machines (LS-SVM) discriminant model. The results showed that the reflectivity of the five types of pathogens to different wavelengths of light was different. The reflectance of the five sensitive bands (462,498,649,853,979 nm) screened by SPA-CA could well reflect the spectral characteristics of the five types of pathogens at different growth stages. The LS-SVM model based on the reflectance of this sensitive band can effectively identify S. aureus, LM and DEC, while SE and S. flexneri are easily misjudged by each other. The probability of SE being misjudged as S. flexneri is 11.2%, and the probability of S. flexneri being misjudged as SE is 19.9%. The overall recognition accuracy of LS-SVM model was 90.9% for the five types of pathogenic bacteria. In conclusion, hyperspectral imaging combined with stoichiometry has the ability of rapid diagnosis of foodborne pathogens.

Publication Date

4-28-2021

First Page

63

Last Page

67,86

DOI

10.13652/j.issn.1003-5788.2021.04.011

References

[1] 王迪, 赵耀, 张晓嫒, 等. 2015年~2016年北京市特色小吃中食源性致病菌监测结果分析[J]. 中国卫生检验杂志, 2018, 28(17): 2 162-2 164.
[2] 李可维, 刘思洁, 赵薇, 等. 2011~2019年吉林省米面制品中食源性致病菌监测分析[J]. 食品安全质量检测学报, 2020, 11(24): 9 390-9 395.
[3] 孙颖颖, 董鹏程, 朱立贤, 等. 食源性致病菌快速检测研究进展[J]. 食品与发酵工业, 2020, 46(17): 264-270.
[4] 刘燕德, 张光伟. 高光谱成像技术在农产品检测中的应用[J]. 食品与机械, 2012, 28(5): 223-226.
[5] 王浩云, 宋进, 潘磊庆, 等. 优化BP神经网络提高高光谱检测调理鸡肉菌落总数精度[J]. 农业工程学报, 2020, 36(5): 302-309.
[6] 郭培源, 徐盼, 董小栋, 等. 高光谱技术结合迭代决策树的香肠菌落总数预测[J]. 食品科学, 2019, 40(6): 312-317.
[7] 刘斌, 王珺, 李可, 等. 傅里叶近红外光谱法快速检测5种常见的食源性致病菌[J]. 食品安全质量检测学报, 2019, 10(18): 6 018-6 021.
[8] YOON S C, LAWRENCE K C, SIRAGUSA G R, et al. Hyperspectral imaging for detecting pathogens grown on agar plates[J]. Optics for Natural Resources, Agriculture, and Foods II, 2007, 6 761: 67610A-67610A-11.
[9] MEHRUBEOGLU M, BUCK G W, LIVINGSTON D W. Differentiation of bacterial colonies and temporal growth patterns using hyperspectral imaging[J]. Imaging Spectrometry XIX, 2014, 9 222: 922206-92220615.
[10] SEO Y W, YOON S C, PARK B, et al. Development of hyperspectral imaging technique for salmonella enteritidisand typhimurium on agar plates[J]. Applied Engineering in Agriculture, 2014, 30(3): 495-506.
[11] WINDHAM W, YOON S C, LADELY S, et al. The effect of regions of interest and spectral pre-processing on the detection of non-0157 Shiga-toxin producing Escherichia coli serogroups on agar media by hyperspectral imaging[J]. Journal of Near Infrared Spectroscopy, 2012, 20(5): 547.
[12] GU Peng, FENG Yao-ze, ZHU Le, et al. Unified classification of bacterial colonies on different agar media based on hyperspectral imaging and machine learning[J]. Molecules, 2020, 25(8): 1 797.
[13] 石吉勇, 吴胜斌, 邹小波, 等. 基于高光谱技术的酸奶中常见致病菌的快速鉴别及计数[J]. 光谱学与光谱分析, 2019, 39(4): 1 186-1 191.
[14] 罗微, 杜焱喆, 章海亮. PCA和SPA的近红外光谱识别白菜种子品种研究[J]. 光谱学与光谱分析, 2016, 36(11): 3 536-3 541.
[15] BONAH E, HUANG Xing-yi, REN Yi, et al. Vis-NIR hyperspectral imaging for the classification of bacterial foodborne pathogens based on pixel-wise analysis and a novel CARS-PSO-SVM model[J]. Infrared Physics & Technology, 2020, 105: 103220.
[16] 成甜甜, 王克俭, 韩宪忠, 等. 基于PSO-LSSVM和特征波长提取的羊肉掺假检测方法[J]. 食品与机械, 2020, 36(11): 52-56.
[17] TANG He-sheng, XUE Song-tao, CHEN R, et al. Online weighted LS-SVM for hysteretic structural system identification[J]. Engineering Structures, 2006, 28(12): 1 728-1 735.
[18] 褚小立. 化学计量学方法与分子光谱分析技术[M]. 北京: 化学工业出版社, 2011: 73-74.
[19] 栢凤女. 大肠杆菌、单增李斯特菌近红外特征敏感组分的研究[D]. 洛阳: 河南科技大学, 2013: 22.
[20] 石吉勇, 张芳, 胡雪桃, 等. 基于高光谱技术的乳杆菌快速鉴别[J]. 中国食品学报, 2018, 18(8): 208-213.
[21] 穆渴心. 基于傅里叶变换近红外光谱结合化学计量学的食源性致病菌快速检测[D]. 武汉: 华中农业大学, 2016: 16.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.