Abstract
A deep learning-based model for the classification and prediction of Baijiu wine brands is developed, combining with the Tensorflow and Keras frameworks. The test sample data set is established by collecting the feature information of Baijiu wine to be tested through an electronic tongue (an array sensor), combining the known Baijiu wine categories with that of the unknow one (to be test). Then the deep learning-based Baijiu wine brand classification prediction model was trained and tested for, preparing for the performance by using the trainedand tested sets. The results showed that the prediction model achieves 99.987% of Baijiu wine brand recognition rate, showing a high accuracy.
Publication Date
4-28-2021
First Page
68
Last Page
71,79
DOI
10.13652/j.issn.1003-5788.2021.04.012
Recommended Citation
Xin, LIU; Qiang, HAN; Yong-shuai, ZHOU; and Xian-guo, TUO
(2021)
"Research on the application methods of classifying and recognizing Baijiu wine based on deep learning,"
Food and Machinery: Vol. 37:
Iss.
4, Article 12.
DOI: 10.13652/j.issn.1003-5788.2021.04.012
Available at:
https://www.ifoodmm.cn/journal/vol37/iss4/12
References
[1] 蒋鼎国, 周红标, 耿忠华. 基于PSO-SVM的白酒品质鉴别电子鼻[J]. 中国酿造, 2011(11): 149-152.
[2] 谢丽慧. 基于SVM算法的智鼻与智舌技术在食用植物油综合质量检测中的应用[D]. 杭州: 浙江工商大学, 2015: 34-53.
[3] SCHULDT C, LAPTEV I, CAPUTO B. Recognizing human actions: A local SVM approach[C]// International Conference on Pattern Recognition. Cambridge, United Kingdom: IEEE, 2004: 32-36.
[4] 罗珠, 黄箭, 李杨华, 等. GC-MS在白酒各类物质分析中的研究进展[J]. 酿酒科技, 2018(12): 117-119.
[5] 杜思佳, 于海宁, 张宏莉. 基于深度学习的文本分类研究进展[J]. 网络与信息安全学报, 2020, 6(4): 1-13.
[6] 苏赋, 吕沁, 罗仁泽. 基于深度学习的图像分类研究综述[J]. 电信科学, 2019, 35(11): 58-74.
[7] 侯一民, 周慧琼, 王政一. 深度学习在语音识别中的研究进展综述[J]. 计算机应用研究, 2017, 34(8): 2 241-2 246.
[8] 赵为. 基于深度学习的电子鼻白酒识别方法研究[D]. 天津: 天津大学, 2018: 29-51.
[9] 邱锡鹏. 神经网络与深度学习[J]. 中文信息学报, 2020, 34(7): 4.
[10] 张宪超. 深度学习: 上[M]. 北京: 科学出版社, 2019: 1-37.
[11] 张向荣. 模式识别[M]. 西安: 西安电子科技大学出版社, 2019: 89-103.
[12] 万磊, 佟鑫, 盛明伟, 等. Softmax分类器深度学习图像分类方法应用综述[J]. 导航与控制, 2019, 18(6): 1-9, 47.
[13] 高晗, 田育龙, 许封元, 等. 深度学习模型压缩与加速综述[J]. 软件学报, 2021, 32(1): 68-92.
[14] BYUNG J K. Improved deep learning algorithm[J]. Journal of Advanced Information Technology and Convergence, 2018, 8(2): 119-127.
[15] 李恒. 基于深度学习过拟合现象的分析[J]. 中国科技信息, 2020(14): 90-91.
[16] 韩梦娇. 基于选择性区域丢弃的dropout方法研究与实现[D]. 成都: 电子科技大学, 2020: 21-36.