Abstract
Applied the existing adaptive grid technology to the counter-rotating twin-screw extruder, useed Autocad software to draw the end profile of the counter-rotating thread element, and establisheed the corresponding 3D model on the Solidworks software. Then imported the geometric model Gambit software for mesh generation. Selecting the adaptable mesh technology of Polyflow software, the mesh of the fluid channel is locally densified according to the Maxdiv value. The finite element solution task of isothermal transient flow problem of counter-rotating twin-screw was designed, and the Maxdiv value was also studied. The effects of the value were studied, on the shear rate field, viscosity field, and pressure field of the flow channel. And compared the effects of the number of mesh refinements in the adaptive grid technology on the computing resources. It is showed that Application potential of the method in the twin-screw extrusion process during the simulation.
Publication Date
4-28-2021
First Page
91
Last Page
97
DOI
10.13652/j.issn.1003-5788.2021.04.017
Recommended Citation
Qi, AN; Zhi-gang, HUANG; Shu-zhen, HU; Guo-qiang, MI; and He, LI
(2021)
"Simulation in counter-rotating twin screw extruder by adaptive grid technology,"
Food and Machinery: Vol. 37:
Iss.
4, Article 17.
DOI: 10.13652/j.issn.1003-5788.2021.04.017
Available at:
https://www.ifoodmm.cn/journal/vol37/iss4/17
References
[1] ISHIKAWA T, AMANO T, KIHARA S I, et al. Flow patterns and mixing mechanisms in the screw mixing element of a co-rotating twin-screw extruder[J]. Polymer Engineering & Science, 2002, 42(5): 925-939.
[2] 吴小娟, 朱建军, 殷伟芬. 单螺杆挤出非等温三维流场的数值分析[J]. 镇江高专学报, 2015, 28(4): 48-51.
[3] 王晓瑾, 李志敏. 异向双螺杆挤出机机头模具内三维流场的数值模拟[J]. 安阳工学院学报, 2006(2): 18-21.
[4] ISHIKAWA T, KIHARA S, FUNATSU K. 3-D non-isothermal flow field analysis and mixing performance evaluation of kneading blocks in a co-rotating twin screw extruder[J]. Polymer Engineering & Science, 2001, 41(5): 840-849.
[5] 邓霁兰. 组合式三螺杆挤出机中流动和混合的数值模拟[D]. 广州: 华南理工大学, 2010: 30-32.
[6] 尹晖东, 张亚军, 董力群, 等. 异向双螺杆元件对含能材料脱挥效果的影响[J]. 塑料, 2019, 48(2): 66-70.
[7] 杨晓彤, 任冬云, 张立群. 废旧胶粉异向双螺杆挤出机连续脱硫挤出传热模拟及实验[J]. 高分子材料科学与工程, 2018, 34(3): 100-105.
[8] 方炜. 非啮合异向旋转波形双螺杆挤出机性能的研究[J]. 中国塑料, 1993, 7(2): 44-49.
[9] 苗一, 朱向哲, 谢禹钧. 啮合异向旋转双螺杆混合元件—齿型元件的流场分析[J]. 塑料工业, 2004(8): 34-37.
[10] 施丰, 耿孝正. 啮合型双螺杆挤出机非常规螺纹元件设计新方法[J]. 中国塑料, 2001(1): 69-74.
[11] HETU J F, ILINCA F. Immersed boundary finite elements for 3D flow simulations in twin-screw extruders[J]. Computers & Fluids, 2013, 87: 2-11.
[12] BERTRAND F, THIBAULT F, DELAMARE L, TANGUY P A. Adaptive finite element simulations of fluid flow in twin-screw extruders[J]. Computers & Chemical Engineering, 2003, 27(4): 491-500.
[13] 毕超. Polyflow软件基础及其在双螺杆挤出仿真过程中的应用[M]. 北京: 机械工业出版社, 2018: 162-164.
[14] 孙旭建. 双螺杆捏合机螺杆转子型线设计及实验研究[D]. 大连: 大连理工大学, 2012: 10-16.
[15] 魏静, 张光辉. 双螺杆捏合机螺纹元件型线设计理论与方法[M]. 北京: 科学出版社, 2018: 22-28.
[16] 罗兵, 龙志斌, 何敏. 啮合异向双螺杆不同螺纹元件的数值模拟及其制备PP阻燃电缆的研究[J]. 中国塑料, 2008, 22(3): 86-90.
[17] 张超, 樊瑜瑾, 田野. 啮合同向双螺杆挤出机滑移条件下的仿真分析[J]. 塑料科技, 2019, 47(8): 71-75.
[18] 马秀清, 林群章, 李晓卫. 捏合块元件混合含能材料的安全性分析[J]. 塑料, 2019, 48(1): 88-91.
[19] 黄志刚, 蒋卫鑫, 李鑫, 等. 啮合异向双螺杆挤出机仿真研究[J]. 包装学报, 2019, 11(3): 9-15.
[20] 刘湘河, 彭涛, 马永寿. 异向双螺杆S型元件混炼效果的数值研究[J]. 工程塑料应用, 2014, 42(4): 51-55.
[21] 吴冰清. 异向双螺杆参数化造型与流固耦合分析[D]. 北京: 东北大学, 2015: 47-48.
[22] 赵玉莲, 李鑫, 安琪, 等. 非等温条件下啮合同向双螺杆挤出过程数值模拟分析[J]. 食品与机械, 2019, 35(4): 76-79.
[23] 马秀清. 啮合异向双螺杆挤出过程停留时间分布实验研究[J]. 中国塑料, 2003(11): 91-94.
[24] CARRAACO F, SANTANA O, CAILLOUX J, et al. Kinetics of the thermal degradation of poly (lactic acid) obtained by reactive extrusion: Influence of the addition of montmorillonite nanoparticles[J]. Polymer Testing, 2015, 48: 69-81.
[25] SONG K, WU F, TONG T, et al. Areal-time moonev-viscosity prediction model of the mixed rubber based on the independent component regression-gaussian process algorithm[J]. Journal of Chemometrics, 2012, 26(11/12): 557-564.
[26] 李晓林. 单螺杆精密挤出机理的研究[D]. 北京: 北京化工大学, 2003: 59-60.