Abstract
In order to improve the drying quality and shorten the drying time of kiwifruit slices, the effects were studied in different temperatures (55, 65, 75, 85 ℃), wind speed (1.5, 2.5, 3.5, 4.5 m/s) and thickness (5, 10, 15 mm) on the hot air drying curve, water effective diffusion coefficient and drying activation energy of kiwifruit slices. The results showed that the whole drying process of kiwifruit slices belonged to reduced-speed drying, and the effective water diffusion coefficient was 1.296 39×10-9 ~4.589 94×10-9 m2/s, which increased with the increase of temperature and wind speed, and decreased with the decrease of slice thickness. The activation energy of kiwifruit slices was 23.03 kJ/mol. After fitting 10 common drying kinetic models, it is found that the Logarithmic model is the best model.
Publication Date
4-28-2021
First Page
150
Last Page
156
DOI
10.13652/j.issn.1003-5788.2021.04.028
Recommended Citation
San-quan, ZOU; Xian-xi, LIU; Zhen-chao, ZHAO; and Xue-bo, ZHANG
(2021)
"Study on drying characteristics and drying kinetic model of kiwi fruit slices in fluidized bed,"
Food and Machinery: Vol. 37:
Iss.
4, Article 28.
DOI: 10.13652/j.issn.1003-5788.2021.04.028
Available at:
https://www.ifoodmm.cn/journal/vol37/iss4/28
References
[1] 李加兴, 孙金玉, 陈双平, 等. 猕猴桃综合加工利用[J]. 食品科学, 2006, 27(11): 575-578.
[2] COLLINS B H, HORSK A, HOTTEN P M, et al. Kiwifruit protects against oxidative DNA damage in human cells and in vitro[J]. Nutrition & Cancer, 2001, 39(1): 148-153.
[3] 孙宁宁. 长白山野生软枣猕猴桃的成分分析及保鲜研究[D]. 长春: 吉林农业大学, 2007: 1-2.
[4] 邵信儒, 孙海涛, 刘颖. 超声提取野生软枣猕猴桃多糖工艺优化[J]. 食品科学, 2012, 33(14): 64-68.
[5] FAOSTAT. Food and agriculture organization of the United States.(2020-10-20) [2020-11-27]. http://www.fao.org/faostat/en/#data/QC.
[6] 高愿军, 郝莉花, 张鑫, 等. 猕猴桃汁维生素C降解动力学的研究[J]. 农业工程学报, 2006, 22(5): 157-160.
[7] 王明召, 阳廷密, 张素英, 等. ‘红阳’猕猴桃不同时期采收果实品质及贮藏效果研究[J]. 中国果树, 2018(4): 31-33.
[8] JIN Peng, WANG Kai-tuo, SHANG Hai-tao, et al. Low-temperature conditioning combined with methyl jasmonate treatment reduces chilling injury of peach fruit[J]. Journal of the Science of Food and Agriculture, 2009, 89: 1 690-1 696.
[9] ALIBAS I. Microwave, air and combined microwave-air-drying parameters of pumpkin slices[J]. LWT-Food Science and Technology, 2007, 40(8): 1 445-1 451.
[10] 侯培军, 刘怡菲, 孟凡金, 等. 不同干燥方式对软枣猕猴桃品质的影响[J]. 辽宁林业科技, 2019(2): 14-17.
[11] 魏丽红, 翟秋喜. 软枣猕猴桃真空冷冻干燥条件的筛选[J]. 辽宁农业职业技术学院学报, 2019, 21(5): 7-9.
[12] 宋一凡, 陈海峰, 袁越锦. 猕猴桃CO2-低温高压渗透膨化干燥工艺优化[J]. 食品科学, 2020, 41(4): 229-234.
[13] 周旭. 猕猴桃切片的射频真空及热风联合干燥研究[D]. 杨凌: 西北农林科技大学, 2019: 31-46.
[14] 张萌, 段续, 任广跃, 等. 预处理方式对热风干燥玫瑰花瓣品质特性的影响[J]. 食品与机械, 2020, 36(1): 204-209, 229.[15] FALADE K O, SOLADEMI O J. Modelling of air drying of fresh and blanched sweet potato slices[J]. International Journal of Food Science and Technology, 2010, 45(2): 278-288.
[16] AKPINAR E K, BICER Y, CETINKAYA F. Modelling of thin layer drying of parsley leaves in a convective dryer and under open sun[J]. Journal of Food Engineering, 2006, 75: 308-315.
[17] SACILIK K, KESKIN R, ELICIN A K. Mathematical modeling of solar tunnel drying of thin layer organic tomato[J]. Journal of Food Engineering, 2006, 73: 231-238.
[18] GUNHAN T, DEMIR V, HANCIOGLU E, et al. Mathematical modeling of drying of bay leaves[J]. Energy Conversion and Management, 2005, 46: 1 667-1 679.
[19] OZDEMIR M, DEVRES Y O. The thin layer drying characteristics of hazelnuts during roasting[J]. Journal of Food Engineering, 1999, 42: 225-233.
[20] 王凤贺, 丁冶春, 陈鹏枭, 等. 油茶籽热风干燥动力学研究[J]. 农业机械学报, 2018, 49(增刊): 426-432.
[21] 尹晓峰, 杨明金, 李光林, 等. 稻谷薄层热风干燥工艺优化及数学模型拟合[J]. 食品科学, 2017, 38(8): 198-205.
[22] 孟岳成, 王雷, 陈杰, 等. 姜片热风干燥模型适用性及色泽变化[J]. 食品科学, 2014, 35(21): 100-105.
[23] 尹慧敏, 聂宇燕, 沈瑾, 等. 基于Weibull分布函数的马铃薯丁薄层热风干燥特性[J]. 农业工程学报, 2016, 32(17): 252-258
[24] 郑海波, 江美都, 傅玉颖, 等. 低温低湿条件下海鳗冷风干燥动力学特性[J]. 中国食品学报, 2012, 34(2): 73-80.
[25] 徐建国, 张森旺, 徐刚, 等. 莲子薄层热风干燥特性与水分变化规律[J]. 农业工程学报, 2016, 32(13): 303-309.
[26] 员冬玲, 耿文广, 杜锐, 等. 南美白对虾过热蒸汽干燥特性及干燥数学模型[J]. 食品科学, 2020, 41(3): 62-67.