Preparation of catalyst Cu/Ce0.75Zr0.25O2 and its catalytic performance in dry reforming of ethanol
Abstract
Cu/Ce0.75Zr0.25O2 catalysts was prepared by urea co-precipitation with assistant of microwave. The activity and stability of the catalyst for ethanol dry gas reforming was studied. The result showed that the Cu/Ce0.75Zr0.25O2 catalyst possessing high catalytic activity. The activity increased with the rising of the reaction temperature. The catalyst stayed stable under 750 ℃ during the 90-hour reaction process and the conversion factor of ethanol remained 100%.
Publication Date
4-28-2021
First Page
157
Last Page
159,234
DOI
10.13652/j.issn.1003-5788.2021.04.029
Recommended Citation
Jia-miao, HUANG; Liang-yi, LI; Dong, CAO; and Zhong-pei, HUANG
(2021)
"Preparation of catalyst Cu/Ce0.75Zr0.25O2 and its catalytic performance in dry reforming of ethanol,"
Food and Machinery: Vol. 37:
Iss.
4, Article 29.
DOI: 10.13652/j.issn.1003-5788.2021.04.029
Available at:
https://www.ifoodmm.cn/journal/vol37/iss4/29
References
[1] 张先楚. 陈化稻谷乙醇发酵中酒糟液清液回用的应用研究[D]. 南阳: 南阳师范学院, 2020: 32-41.
[2] 胡世洋, 王国庆, 屈海峰, 等. 以玉米为原料的乙醇发酵工艺优化[J]. 化工科技, 2020, 28(2): 58-63.
[3] 孙健, 钮福祥, 岳瑞雪, 等. 甘薯膳食纤维构成及对乙醇发酵的影响[J]. 中国粮油学报, 2014, 29(5): 18-22.
[4] 黄忠华, 罗左青, 雷光鸿, 等. 纯固体甘蔗糖蜜与液体甘蔗糖蜜发酵生产酒精的对比研究[J]. 轻工科技, 2012(8): 3-4.
[5] 徐海东, 伍时华, 易弋, 等. 甘蔗糖蜜预处理对乙醇发酵的影响[J]. 酿酒科技, 2018(6): 52-56.
[6] 尚红岩, 郭艺山, 张远平, 等. 高浓度糖蜜发酵酒精生物抑菌技术的研究[J]. 甘蔗糖业, 2020, 49(6): 75-79.
[7] 黄向阳, 尚红岩, 徐日益, 等. 固定化酵母在糖蜜发酵酒精中的研究与应用[J]. 创新与交流, 2017, 19: 47-48.
[8] 李振林. 大豆糖蜜发酵生产酒精的技术[J]. 酿酒, 2012, 39(2): 91-93.
[9] 陆杰光. 大豆糖蜜发酵生产酒精工艺探究[J]. 化学工程与装备, 2012(11): 51-53.
[10] 胡丽娟, 王文娟, 梁智鹏, 等. 乙醇—二氧化碳重整制氢研究现状[J]. 工业催化, 2020, 28(12): 16-21.
[11] WEI Yi-chen, CAI Wei-jie, DENG Shi-ji, et al. Efficient syngas production via dry reforming of renewable ethanol over Ni/KIT-6 nanocatalysts[J]. Renewable Energy, 2020, 145: 1 507-1 516.
[12] SELIN B, SEDA K, AHMET K A. Recent advances in sustainable syngas production by catalytic CO2 reforming of ethanol and glycerol[J]. Sustainable Energy & Fuels, 2020(3): 1 029-1 047.
[13] 李吉刚, 孙杰, 张立功, 等. 花状微球 NiO/CeO2催化剂上乙醇水蒸气重整制氢研究[J]. 燃料化学学报, 2010, 38(3): 332-336.
[14] NAVARRO R M, SANCHEZ-SANCHEZ M C, ALVAREZ-GALVAN M C, et al. Hydrogen production from renewable sources: Biomass and photocatalytic opportunities[J]. Energy & Environmental Science, 2009(1): 35-54.
[15] 马洪艳. 高稳定性乙醇蒸汽重整Ni基催化剂的设计与合成[D]. 天津: 天津大学, 2016: 12-35.
[16] 殷宇. 乙醇水蒸气重整制氢催化剂的合成及应用研究[D]. 柳州: 广西科技大学, 2013: 13-48.
[17] 贾英桂. 乙醇水重整制氢催化剂的制备、表征及性能评价[D]. 柳州: 广西工学院, 2012: 34-38.
[18] 李水荣. 纳米构筑Ni-ZrO2催化剂催化乙醇蒸汽重整制氢[D]. 天津: 天津大学, 2011: 31-62.
[19] 张保才, 许斌, 李勇, 等. 镍基催化剂上乙醇水蒸气重整反应的研究[J]. 燃料化学学报, 2006, 34(4): 456-460.
[20] 隗义琛, 蔡伟杰, 谭凤芝, 等. Ce改性Ni/KIT-6催化剂上乙醇干气重整反应[J]. 化学工业与工程, 2020, 37(6): 10-17.
[21] 魏文柯, 隗义琛, 赵子娇, 等. Ni/KIT-6催化剂上乙醇自热干气重整反应研究[J]. 广州化工, 2018, 46(5): 85-87.
[22] 曹东. 铜基催化剂上乙醇干气重整制合成气反应研究[D]. 大连: 大连工业大学, 2018: 5-45.