Abstract
Using tartary buckwheat seeds as raw materials, the effects of different temperature and time during seed soaking and germination were analyzed, on the content of total flavonoids and γ-aminobutyric acid (GABA), DPPH free radical clearance rate, germination rate and bud length of tartary buckwheat seeds, and the germination conditions of tartary buckwheat tea were optimized. The results showed that the optimal germination conditions of tartary buckwheat seeds were as followd: soaking temperature 20 ℃, soaking time 8 h, germination temperature 26 ℃, and germination time 98 h. Under these conditions, the total flavonoids content of germinating tartary buckwheat was 10.34 mg/g, which was 2.27 times of the control group, and the GABA content was 2.86 mg/g, which was 1.17 times of the control group. After tea preparation, the concentration of total flavonoids in germinated tartary buckwheat tea was 7.678 mg/100 mL, which was 3.71 times that of the control group. The mass concentration of GABA was 13.142 mg/100 mL, 1.63 times that of the control group. The results of sensory evaluation were better than those of the control group. Germination treatment can improve the content of total flavonoids, GABA and sensory quality of tartary buckwheat tea.
Publication Date
4-28-2021
First Page
176
Last Page
183
DOI
10.13652/j.issn.1003-5788.2021.04.033
Recommended Citation
Xiao-meng, TONG; Chun-xiang, CHAI; and Yong-qiang, WANG
(2021)
"Effect of germination on grain quality of tartary buckwheat and optimization of technology,"
Food and Machinery: Vol. 37:
Iss.
4, Article 33.
DOI: 10.13652/j.issn.1003-5788.2021.04.033
Available at:
https://www.ifoodmm.cn/journal/vol37/iss4/33
References
[1] 张杰, 程伟, 李娜, 等. 苦荞营养成分及其黄酮类物质提取工艺研究[J]. 酿酒, 2019, 46(5): 12-16.
[2] MORIN B, DAVIES M J, DEAN R T. The protein oxidation product 3, 4-dihydroxyphenylalanine mediates oxidative DNA damage[J]. Biochemical Journal, 1998, 330(3): 1 059-1 067.
[3] 陈鹏, 刘洋, 张曼, 等. 苦荞籽粒蛋白质亚基的分离及其营养评价[J]. 营养学报, 2011, 33(1): 10-13.
[4] KIM S L, KIM S K, PARK C H. Introduction and nutritional evaluation of buckwheat sprouts as a new vegetable[J]. Food Research International, 2004, 37(4): 319-327.
[5] VANESA Guillén-Casla, ROSALES-CONRADO N, MARA Eugenia León-González, et al. Principal component analysis (PCA) and multiple linear regression (MLR) statistical tools to evaluate the effect of E-beam irradiation on ready-to-eat food[J]. Journal of Food Composition and Analysis, 2011, 24(3): 456-464.
[6] 蒲升惠, 高颖, 赵志峰, 等. 苦荞中活性物质及其保健功效研究进展[J]. 食品工业科技, 2019, 40(8): 331-336.
[7] BONAFACCIA G, MAROCCHINI M, KREFT I. Composition and technological properties of the flour and bran from common and tartary buckwheat[J]. Food Chemistry, 2003, 80(1): 9-15.
[8] 童晓萌. 萌动发芽荞麦茶的研制及品质评价[D]. 天津: 天津商业大学, 2019: 1-3.
[9] 石磊, 刘超, 梁霞, 等. 萌发荞麦中芦丁和槲皮素含量变化的研究[J]. 食品研究与开发, 2016, 37(15): 30-33.
[10] MERENDINO N, MOLINARI R, COSTANTINI L, et al. A new "functional" pasta containing tartary buckwheat sprouts as an ingredient improves the oxidative status and normalizes some blood pressure parameters in spontaneously hypertensive rats[J]. Food & Function, 2014, 5(5): 1 017-1 026.
[11] RAMOSROMERO S, HEREU M, ATIENZA L, et al. Functional effects of the buckwheat iminosugar d-fagomine on rats with diet-induced prediabetes[J]. Molecular Nutrition & Food Research, 2018, 62(16): 1-32.
[12] UNICHENKO P, KIRISCHUK S, LUHMANNH J. GABA transporters control GABA ergic neurotransmission in the mouse subplate[J]. Neuroscience, 2015, 304(7): 217-227.
[13] 陈春旭, 李海虹, 高红梅, 等. 一种发芽苦荞格瓦斯饮料制备工艺研究[J]. 安徽科技学院学报, 2020, 34(1): 56-63.
[14] 曾婷婷, 张伟, 付婷婷, 等. 重庆地区市售代用茶质量安全初步调查[J]. 南方农业, 2019, 13(34): 36-39.
[15] 赵英彩.一种苦荞茶的加工方法: CN107912572A[P]. 2018-04-17.
[16] 巩发永, 李静.一种挤压成型苦荞茶的制备工艺: CN106560047A[P]. 2017-04-12.
[17] 李晓丹. 苦荞胁迫萌发及功能性成分的研究[D]. 无锡: 江南大学, 2013: 17-38.
[18] 彭涛, 马文锦, 张怀予, 等.利用响应面法优化苦荞萌动茶发芽工艺的研究[J]. 食品科技, 2013, 38(1): 103-108.
[19] 张乐宏, 付建瑞, 李岩, 等. 麦饭石水培养荞麦芽的发芽工艺及麦芽的抗氧化活性[J]. 现代食品科技, 2018, 34(7): 187-195, 186.
[20] 李晓丹, 王莉, 王韧, 等. 金属盐离子对苦荞萌发及其总黄酮含量的影响[J]. 中国粮油学报, 2012, 27(10): 26-31.
[21] 衣申艳, 陆国权. 甘薯黄酮含量近红外反射光谱分析模型的构建及其应用[J]. 光谱实验室, 2013, 30(2): 860-864.
[22] 王青. 苦荞萌发物中营养成分提取测定及黄酮类化合物抗肿瘤活性的研究[D]. 上海: 上海海洋大学, 2011: 19-28.
[23] 赵琳. 挤压苦荞茶生产工艺的优化及其对秀丽隐杆线虫生理生化指标的影响[D]. 长沙: 湖南农业大学, 2015: 10-20.
[24] 李强, 孙步功, 张鹏, 等. 紫花苜蓿种子破眠方法的设计与试验研究[J]. 农机化研究, 2021, 43(6): 161-165.
[25] 马紫怡. 野大麦种子休眠与萌发特性的研究[D]. 呼和浩特: 内蒙古农业大学, 2019: 2-12.
[26] 张良晨, 李东红, 于淼, 等. 发芽糙米γ-氨基丁酸富集工艺的研究进展[J]. 农业科技与装备, 2019(4): 51-53.
[27] 张绍智, 普红梅, 张静, 等. 培养条件及干燥方式对苦荞芽苗品质的影响[J]. 食品安全质量检测学报, 2020, 11(7): 2 109-2 115.
[28] 苌淑敏, 陈茗, 赵天瑶, 等. 浸种与光照时间对蚕豆芽苗菜生长与品质的影响[J]. 中国农业大学学报, 2019, 24(10): 1-9.
[29] 李海平, 李灵芝, 任彩文, 等. 温度、光照对苦荞麦种子萌发、幼苗产量及品质的影响[J]. 西南师范大学学报(自然科学版), 2009, 34(5): 158-161.
[30] 何俊星, 何平, 张益锋, 等. 温度和盐胁迫对金荞麦和荞麦种子萌发的影响[J]. 西南师范大学学报(自然科学版), 2010, 35(3): 181-185.
[31] 李静舒. 温度和干旱胁迫对荞麦种子萌发的影响[J]. 山西农业科学, 2014, 42(11): 1 160-1 162, 1 168.
[32] 胡鞒缤. 发酵型萌动苦荞麦酸奶的研究[D]. 太原: 山西大学, 2014: 2-9.
[33] 孙丹, 黄士淇, 蔡圣宝. 不同加工方式对苦荞中总酚、总黄酮及抗氧化性的影响[J]. 食品与发酵工业, 2016, 42(1): 141-147.
[34] 胡俊君, 仪鑫, 李红梅, 等. 苦荞发芽期不同部位的活性成分含量变化[J]. 食品研究与开发, 2017, 38(23): 13-17, 87.
[35] BOUCHE N, LACOMBE B, FROMM H. GABA signaling: A conserved and ubiquitous mechanism[J]. Trends in Cell Biology, 2003, 13(12): 607-610.