Abstract
This paper mainly introduces the enrichment technology of norovirus, and reviews the research advances of norovirus in the nucleic acid detection, immunological detection and biosensor detection at domestic and abroad and also analyzes and compares the advantages and disadvantages of various method. Finally, the future research direction of norovirus was prospected.
Publication Date
4-28-2021
First Page
200
Last Page
206,232
DOI
10.13652/j.issn.1003-5788.2021.04.037
Recommended Citation
Xiao-yan, LIAO; Li-li, CHEN; and Ya-long, BAI
(2021)
"The progress of detection methods for norovirus in foods,"
Food and Machinery: Vol. 37:
Iss.
4, Article 37.
DOI: 10.13652/j.issn.1003-5788.2021.04.037
Available at:
https://www.ifoodmm.cn/journal/vol37/iss4/37
References
[1] COSTANTINI V P, COOPER E M, HARDAKER H L, et al. Epidemiologic, virologic, and host genetic factors of norovirus outbreaks in long-term care facilities[J]. Clin Infect Dis, 2015, 62(1): 1-10.
[2] DI MARTINO B, DI PROFIO F, MELEGARI I, et al. A novel feline norovirus in diarrheic cats[J]. Infect Genet Evol, 2016, 38: 132-137.
[3] PRINGLE K, LOPMAN B, VEGA E, et al. Noroviruses: Epidemiology, immunity and prospects for prevention[J]. Future Microbiol, 2015, 10(1): 53-67.
[4] CHHABRA P, DE G M, PARRA G I, et al. Updated classification of norovirus genogroups and genotypes[J]. Gen Virol, 2019, 100(10): 1 393-1 406.
[5] DE GRAAF M, BODEWES R, VAN ELK C E, et al. Norovirus infection in harbor porpoises[J]. Emerg Infect Dis, 2017, 23(1): 87-91.
[6] 李婷, 雷清. 诺如病毒的流行及进化概述[J]. 微生物学免疫学进展, 2019, 47(6): 70-74.
[7] 廖巧红, 冉陆, 靳淼, 等. 诺如病毒感染暴发调查和预防控制技术指南(2015版)[J]. 中华预防医学杂志, 2016, 50(1): 7-16.
[8] 管锦绣, 许喜林, 翁文川, 等. 西生菜中低污染量GⅡ型诺如病毒的富集与定量检测研究[J]. 食品安全质量检测学报, 2017, 8(9): 3 536-3 542.
[9] 林吉恒, 黄朱梁, 彭志兰, 等. 免疫磁珠分离技术在食源性致病菌检测中的应用[J]. 食品安全质量检测学报, 2019, 10(18): 5 998-6 005.
[10] PARK Y, CHO Y H, JEE Y, et al. Immunomagnetic separation combined with real-time reverse transcriptase PCR assays for detection of norovirus in contaminated food[J]. Appl Environ Microbiol, 2008, 74(13): 4 226-4 230.
[11] LEE H M, KWON J, CHOI J S, et al. Rapid detection of norovirus from fresh lettuce using immunomagnetic separation and a quantum dots assay[J]. J Food Prot, 2013, 76(4): 707-711.
[12] 张乐, 吴清平, 吴克刚, 等. 基于靶向结合的食源性诺如病毒富集与检测研究进展[J]. 病毒学报, 2019, 35(6): 978-983.
[13] HENNESSY E P, GREEN A D, CONNOR M P, et al. Norwalk virus infection and disease is associated with ABO histo-blood group type[J]. Infect Dis, 2003, 188(1): 176-177.
[14] ZHOU Zhen-huan, TIAN Zhen-gan, LI Qian-qian, et al. In situ capture RT-qPCR: A new simple and sensitive method to detect human norovirus in oysters[J]. Front Microbiol, 2017, 8: 554-561.
[15] TIAN Peng, ENGELBREKTSON A, MANDRELL R. Two-log increase in sensitivity for detection of norovirus in complex samples by concentration with porcine gastric mucin conjugated to magnetic beads[J]. Appl Environ Microbiol, 2008, 74(14): 4 271-4 276.
[16] WANG Da-peng, TIAN Peng. Inactivation conditions for human norovirus measured by an in situ capture-qRT-PCR method[J]. Inter J Food Microbiol, 2014, 172: 76-82.
[17] SURESH M, HARLOW J, NASHERI N. Evaluation of porcine gastric mucin assay for detection and quantification of human norovirus in fresh herbs and leafy vegetables[J]. Food Microbiol, 2019, 84: 103 254-103 284.
[18] MARIONNEAU S, CAILLEAU-THOMAS A, ROCHER J, et al. ABH and Lewis histo-blood group antigens, a model for the meaning of oligosaccharide diversity in the face of a changing world[J]. Biochimie, 2001, 83(7): 565-573.
[19] 马丽萍, 苏来金, 赵峰, 等. 长牡蛎中类HBGAs的分型及与诺如病毒P粒子结合特性研究[J]. 食品安全质量检测学报, 2015, 6(10): 3 970-3 975.
[20] TOMBELLI S, MINUNNI M, MASCINI M. Aptamers-based assays for diagnostics, environmental and food analysis[J]. Biomol Eng, 2007, 24(2): 191-200.
[21] ESCUDERO-ABARCA B I, SUH S H, MOORE M D, et al. Selection, characterization and application of nucleic acid aptamers for the capture and detection of human norovirus strains[J]. PLoS One, 2014, 9(9): e106805.
[22] XU De-shun, WU Xiao-fang, HAN Jian-kang, et al. Detection of GI and GII noroviruses in drinking water and vegetables using filtration and real-time RT-PCR[J]. Eur Food Res Technol, 2014, 239(5): 795-801.
[23] RUPPROM K, CHAVALITSHEWINKOON-PETMITR P, DIRAPHAT P, et al. Evaluation of real-time RT-PCR assays for detection and quantification of norovirus genogroups I and II[J]. Virol Sin, 2017, 32(2): 139-146.
[24] BRASSARD J, GAGNE M J, GENEREUX M, et al. Detection of human food-borne and zoonotic viruses on irrigated, field-grown strawberries[J]. Appl Environ Microbiol, 2012, 78(10): 3 763-3 766.
[25] 莫雪梅, 高东微. SYBR Green Ⅰ 荧光RT-PCR法检测贝类中的诺如病毒[J]. 生物工程学报, 2010, 26(6): 817-822.
[26] MIOTKE L, LAU B T, RUMMA R T, et al. High sensitivity detection and quantitation of DNA copy number and single nucleotide variants with single color droplet digital PCR[J]. Anal Chem, 2014, 86(5): 2 618-2 624.
[27] MU Di, YAN Liang, TANG Hui, et al. A sensitive and accurate quantification method for the detection of hepatitis B virus covalently closed circular DNA by the application of a droplet digital polymerase chain reaction amplification system[J]. Biotechnol Lett, 2015, 37(10): 2 063-2 073.
[28] 陈嘉茵, 方苓, 吴诗微, 等. 一步法微滴数字PCR检测生菜中GII型诺如病毒[J]. 食品科学, 2019, 40(4): 332-337.
[29] 王雪晴, 王群, 房保海, 等. 微滴式数字PCR检测冷冻草莓中GⅠ、GⅡ型诺如病毒[J]. 食品工业科技, 2020, 41(2): 89-94.
[30] WU Xu-long, LIN Hua, CHEN Shi-jie, et al. Development and application of a reverse transcriptase droplet digital PCR (RT-ddPCR) for sensitive and rapid detection of Japanese encephalitis virus[J]. J Virol Methods, 2017, 248: 166-171.
[31] TAN Dong-mei, LIU Su-ling, LIU Wei, et al. Utility of droplet digital pcr assay for quantitative detection of norovirus in shellfish, from production to consumption in Guangxi, China[J]. Biomed Environ Sci, 2018, 31(10): 713-720.
[32] HASING M E, HAZES B, LEE B E, et al. A next generation sequencing-based method to study the intra-host genetic diversity of norovirus in patients with acute and chronic infection[J]. BMC Genomics, 2016, 17(1): 480-490.
[33] IMAMURA S, KANEZASHI H, GOSHIM T, et al. Application of next-generation sequencing to evaluate the profile of noroviruses in pre-and post-depurated oysters[J]. Foodborne Pathog Dis, 2016, 13(10): 559-565.
[34] IMAMURA S, HARUNA M, GOSHIMA T, et al. Next-generation sequencing analysis of the diversity of human noroviruses in japanese oysters[J]. Foodborne Pathog Dis, 2017, 14(8): 465-471.
[35] BARTSCH C, HPER D, MDE D, et al. Analysis of frozen strawberries involved in a large norovirus gastroenteritis outbreak using next generation sequencing and digital PCR[J]. Food Microbiol, 2018, 76: 390-395.
[36] GYAWALI P, KC S, BEALE D J, et al. Current and emerging technologies for the detection of norovirus from shellfish[J]. Foods, 2019, 8(6): 187-204.
[37] KUMTHIP K, KHAMRIN P, SAIKRUANG W, et al. Comparative evaluation of norovirus infection in children with acute gastroenteritis by rapid immunochromatographic test, RT-PCR and Real-time RT-PCR[J]. J Trop Pediatr, 2017, 63(6): 468-475.
[38] 张捷, 王琳, 霍江莲, 等. 基于近红外免疫层析技术食源性诺如病毒快速检测方法研究[J]. 黑龙江医学, 2017, 41(7): 691-694.
[39] ALHADRAMI H A, AL-AMER S, ALORAIJ Y, et al. Development of a simple, fast, and cost-effective nanobased immunoassay method for detecting norovirus in food samples[J]. ACS Omega, 2020, 5(21): 12 162-12 165.
[40] SAYLAN Y, ERDEM , NAL S, et al. An alternative medical diagnosis method: biosensors for virus detection[J]. Biosensors (Basel), 2019, 9(2): 65-86.
[41] BAEK S H, KIM M W, PARK C Y, et al. Development of a rapid and sensitive electrochemical biosensor for detection of human norovirus via novel specific binding peptides[J]. Biosensors and Bioelectronics, 2019, 123: 223-229.
[42] BAEK S H, PARK C Y, NGUYENB T P, et al. Novel peptides functionalized gold nanoparticles decorated tungsten disulfide nanoflowers as the electrochemical sensing platforms for the norovirus in an oyster[J]. Food Control, 2020, 114: 107 225-107 231.
[43] GUO Jiu-biao, LIU Dan, YANG Zhi-qiang, et al. A photoelectrochemical biosensor for rapid and ultrasensitive norovirus detection[J]. Bioelectrochemistry, 2020, 136: 107 591-107 598.
[44] LEE J, TAKEMURA K, KATO C N, et al. Binary nanoparticle graphene hybrid structure-based highly sensitive biosensing platform for norovirus-like particle detection[J]. ACS Appl Mater Interfaces, 2017, 9(32): 27 298-27 304.
[45] HIRANO S, SAITO J, YUKAWA B, et al. Improvement of electrochemical conditions for detecting redox reaction of K3[Fe(CN)6] toward the application in norovirus aptasensor[J]. Electrochemistry, 2020, 88(3): 205-209.
[46] LIU Ling-ling, MOORE M D. A survey of analytical techniques for noroviruses[J]. Foods, 2020, 9(3): 318.
[47] ZHAO Xing-hai, WONG M K, CHIU S K, et al. Effects of three-layered nanodisk size on cell detection sensitivity of plasmon resonance biosensors[J]. Biosens Bioelectron, 2015, 74: 799-807.
[48] HEO N S, SEO Y O, MYUNG Y R, et al. Affinity peptide-guided plasmonic biosensor for detection of noroviral protein and human norovirus[J]. Biotechnol Bioproc E, 2019, 24(2): 318-325.
[49] HWANG H J, RYU M Y, PARK C Y, et al. High sensitive and selective electrochemical biosensor: Label-free detection of human norovirus using affinity peptide as molecular binder[J]. Biosens Bioelectron, 2017, 87: 164-170.
[50] HELMERHORST E, CHANDLER D J, NUSSIO M, et al. Real-time and label-free bio-sensing of molecular interactions by surface plasmon resonance: A laboratory medicine perspective[J]. Clin Biochem Rev, 2012, 33(4): 161-173.
[51] ZHAO Zhou, ZHANG Jie, XU Mei-ling, et al. A rapidly new-typed detection of norovirus based on F0F1-ATPase molecular motor biosensor[J]. Biotechnol Bioproc E, 2016, 21(1): 128-133.
[52] ADEGOKE O, SEO M W, KATO T, et al. An ultrasensitive SiO2-encapsulated alloyed CdZnSeS quantum dot-molecular beacon nanobiosensor for norovirus[J]. Biosens Bioelectron, 2016, 86: 135-142.
[53] ESCUDERO-ABARCA B I, RAWSTHORNE H, GOULTER R M, et al. Molecular methods used to estimate thermal inactivation of a prototype human norovirus: More heat resistant than previously believed? [J]. Food Microbiol, 2014, 41: 91-95.