Abstract
The aptamers used for screening various food hazards, such as pathogens, biotoxins, antibiotics, veterinary drugs, pesticides, heavy metal ions and so on, was firstly introduced in this review, and then the advances in simultaneous detection of these food hazards based on aptasensor were summarized. Finally, the future prospects were discussed in the perspectives section.
Publication Date
4-28-2021
First Page
217
Last Page
225
DOI
10.13652/j.issn.1003-5788.2021.04.040
Recommended Citation
Lin-chen-meng, GAO; Hua, YE; Sheng-bo, HUANG; Zhan-ming, LI; Yuan-xin, GUO; Chao, LI; and Zhou-ping, WANG
(2021)
"Recent advances in simultaneous detection of food hazards based on aptasensor,"
Food and Machinery: Vol. 37:
Iss.
4, Article 40.
DOI: 10.13652/j.issn.1003-5788.2021.04.040
Available at:
https://www.ifoodmm.cn/journal/vol37/iss4/40
References
[1] 吴有雪, 吴美娇, 田亚晨, 等. 沙门氏菌检测生物传感器研究进展[J]. 食品科学, 2021, 42(3): 339-345.
[2] XIONG Zheng-wei, WANG Qiang, XIE Yue-jie, et al. Simultaneous detection of aflatoxin B1 and ochratoxin A in food samples by dual DNA tweezers nanomachine[J]. Food Chem, 2021, 338: 128122.
[3] FU Ling-lin, QIAN Yi-fan, ZHOU Jin-ru, et al. Fluorescence-based quantitative platform for ultrasensitive food allergen detection: From immunoassays to DNA sensors[J]. Comprehensive Reviews in Food Science and Food Safety, 2020, 19(6): 3 343-3 364.
[4] 陈婷婷, 王鑫, 陶晓奇. 基于特异性识别生物探针检测食品中雌激素残留研究进展[J]. 食品与机械, 2020, 36(4): 221-225.
[5] 张辉, 叶华, 吴世嘉, 等. 核酸适配体及其在食品安全领域中的应用研究进展[J]. 食品与机械, 2016, 32(10): 194-199.
[6] 黄玉坤, 陶璇, 邵坤, 等. 基于适配体杂交链式反应检测郫县豆瓣中黄曲霉毒素B1[J]. 食品科学, 2020, 41(22): 301-307.
[7] KORDASHT H K, HASANZADEH M. Aptamer based recognition of cancer cells: Recent progress and challenges in bioanalysis[J]. Talanta, 2020, 220: 121436.
[8] SOLHI E, HASANZADEH M. Critical role of biosensing on the efficient monitoring of cancer proteins/biomarkers using label-free aptamer based bioassay[J]. Biomed Pharmacother, 2020, 132: 110849.
[9] TUERK C, GOLD L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA Polymerase[J]. Science, 1990, 249: 505-510.
[10] ELLINGTON A D, SZOSTAK J W. In vitro selection of RNA molecules that bind specific ligands[J]. Nature, 1990, 346: 818-822.
[11] STRATIS-CULLUM D N, MCMASTERS S, PELLEGRINO P M. Evaluation of relative aptamer binding to Campylobacter jejuni Bacteria using affinity probe capillary electrophoresis[J]. Anal Lett, 2009, 42(15): 2 389-2 402.
[12] LEE Y J, HAN S R, MAENG J S, et al. In vitro selection of Escherichia coli O157:H7-specific RNA aptamer[J]. Biochemical and Biophysical Research Communications, 2012, 417(1): 414-420.
[13] 韩晓晓. 阪崎肠杆菌适配体制备及其应用[D]. 无锡: 江南大学, 2013: 27-33.
[14] DUAN Nuo, WU Shi-jia, YU Ye, et al. A dual-color flow cytometry protocol for the simultaneous detection of Vibrio parahaemolyticus and Salmonella typhimurium using aptamer conjugated quantum dots as labels[J]. Analytica Chimica Acta, 2013, 804: 151-158.
[15] 王鑫. 链球菌适配体制备及应用[D]. 无锡: 江南大学, 2013: 30-40.
[16] SUH S H, JAYKUS L A. Nucleic acid aptamers for capture and detection of Listeria spp[J]. Journal of Biotechnology, 2013, 167(4): 454-461.
[17] GONG Wen-hui, DUAN Nuo, WU Shi-jia, et al. Selection, identification, and application of dual DNA aptamers against Shigella sonnei[J]. Anal Methods, 2015, 7(8): 3 625-3 631.
[18] BARTHELMEBS L, JONCA J, HAYAT A, et al. Enzyme-linked aptamer assays (ELAAs), based on a competition format for a rapid and sensitive detection of Ochratoxin A in wine[J]. Food Control, 2011, 22(5): 737-743.
[19] ROUAH-MARTIN E, MEHTA J, VAN DORST B, et al. Aptamer-based molecular recognition of lysergamine, metergoline and small ergot alkaloids[J]. International Journal of Molecular Sciences, 2012, 13(12): 17 138-17 159.
[20] CHEN Xiu-juan, HUANG Yu-kun, DUAN Nuo, et al. Selection and identification of ssDNA aptamers recognizing zearalenone[J]. Anal Bioanal Chem, 2013, 405(20): 6 573-6 581.
[21] CHEN Xiu-juan, HUANG Yu-kun, DUAN Nuo, et al. Selection and characterization of single stranded DNA aptamers recognizing fumonisin B1[J]. Microchimica Acta, 2014, 181(11/12): 1 317-1 324.
[22] CHEN Xiu-juan, HUANG Yu-kun, DUAN Nuo, et al. Screening and identification of DNA aptamers against T-2 toxin assisted by graphene oxide[J]. J Agric Food Chem, 2014, 62(42): 10 368-10 374.
[23] HUANG Yu-kun, CHEN Xiu-juan, DUAN Nuo, et al. Selection and characterization of DNA aptamers against Staphylococcus aureus enterotoxin C1[J]. Food Chemistry, 2015, 166: 623-629.
[24] YING Guo-qing, ZHU Fang-fang, YI Yu, et al. Selecting DNA aptamers for endotoxin separation[J]. Biotechnology letters, 2015, 37(8): 1 601-1 605.
[25] CH MOJTABA H, AMANI J, SEDIGHIAN H, et al. Isolation of a new ssDNA aptamer against staphylococcal enterotoxin B based on CNBr-activated sepharose-4B affinity chromatography[J]. J Mol Recognit, 2016, 29(9): 436-445.
[26] WU Shi-jia, DUAN Nuo, ZHANG Wei-xiao, et al. Screening and development of DNA aptamers as capture probes for colorimetric detection of patulin[J]. Analytical Biochemistry, 2016, 508: 58-64.
[27] GU Hua-jie, DUAN Nuo, WU Shi-jia, et al. Graphene oxide-assisted non-immobilized SELEX of okdaic acid aptamer and the analytical application of aptasensor[J]. Scientific Reports, 2016, 6: 21665.
[28] WU Shi-jia, LI Qi, DUAN Nuo, et al. DNA aptamer selection and aptamer-based fluorometric displacement assay for the hepatotoxin microcystin-RR[J]. Microchim Acta, 2016, 183(9): 2 555-2 562.
[29] FROHNMEYER E, FRISCH F, FALKE S, et al. Highly affine and selective aptamers against cholera toxin as capture elements in magnetic bead-based sandwich ELAA[J]. Journal of Biotechnology, 2018, 269: 35-42.
[30] SEDIGHIAN H, HALABIAN R, AMANI J, et al. Staggered target SELEX, a novel approach to isolate non-cross-reactive aptamer for detection of SEA by apta-qPCR[J]. Journal of Biotechnology, 2018, 286: 45-55.
[31] GU Hua-jie, DUAN Nuo, XIA Yu, et al. Magnetic separation-based multiple SELEX for effectively selecting aptamers against saxitoxin, domoic acid, and tetrodotoxin[J]. J Agric Food Chem, 2018, 66(37): 9 801-9 809.
[32] HA S J, PARK J H, LEE B, et al. Label-free direct detection of saxitoxin based on a localized surface plasmon resonance aptasensor[J]. Toxins, 2019, 11(5): 274.
[33] NIAZI J H, LEE S J, GU M B. Single-stranded DNA aptamers specific for antibiotics tetracyclines[J]. Bioorgan Med Chem, 2008, 16(15): 7 245-7 253.
[34] SONG K M, CHO M, JO H, et al. Gold nanoparticle-based colorimetric detection of kanamycin using a DNA aptamer[J]. Analytical Biochemistry, 2011, 415(2): 175-181.
[35] GONZLEZ-FERNNDEZ E, DE-LOS-SANTOS-LVAREZ N, LOBO-CASTAN M J, et al. Aptamer-based inhibition assay for the electrochemical detection of tobramycin using magnetic microparticles[J]. Electroanalysis, 2011, 23(1): 43-49.
[36] SONG K M, JEONG E, JEON W, et al. Aptasensor for ampicillin using gold nanoparticle based dual fluorescence-colorimetric methods[J]. Anal Bioanal Chem, 2012, 402(6): 2 153-2 161.
[37] HAN S R, YU J, LEE S W. In vitro selection of RNA aptamers that selectively bind danofloxacin[J]. Biochemical and Biophysical Research Communications, 2014, 448(4): 397-402.
[38] NI Heng-jia, ZHANG Su-xia, DING Xing-hua, et al. Determination of enrofloxacin in bovine milk by a novel single-stranded DNA aptamer chemiluminescent enzyme immunoassay[J]. Anal Lett, 2014, 47(17): 2 844-2 856.
[39] DUAN Ye, GAO Zhi-qiang, WANG Li-hui, et al. Selection and identification of chloramphenicol-specific DNA aptamers by mag-SELEX[J]. Appl Biochem Biotech, 2016, 180(8): 1 644-1 656.
[40] LEE A Y, HA N R, JUNG I P, et al. Development of a ssDNA aptamer for detection of residual benzylpenicillin[J]. Analytical Biochemistry, 2017, 531: 1-7.
[41] LIU Zhong-cheng, ZHANG Yan-fen, XIE Yao, et al. An aptamer-based colorimetric sensor for streptomycin and its application in food inspection[J]. Chem Res Chinese U, 2017, 33(5): 714-720.
[42] JAEGER J, GROHER F, STAMM J, et al. Characterization and inkjet printing of an RNA Aptamer for paper-based biosensing of ciprofloxacin[J]. Biosensors-Basel, 2019, 9(1): 7.
[43] MEHENNAOUI S, POORAHONG S, JIMENEZ G C, et al. Selection of high affinity aptamer-ligand for dexamethasone and its electrochemical biosensor[J]. Scientific Reports, 2019, 9(1): 6 600.
[44] YANG Ling, NI Heng-jia, LI Cheng-long, et al. Development of a highly specific chemiluminescence aptasensor for sulfamethazine detection in milk based on in vitro selected aptamers[J]. Sensor Actuat B-Chem, 2019, 281: 801-811.
[45] SHI Hai-xing, KOU Qi-ming, WU Ping, et al. Selection and application of DNA aptamers against sulfaquinoxaline assisted by graphene oxide-based SELEX[J/OL]. Food Analytical Methods. [2020-10-12]. https://doi.org/10.1007/s12161-020-01869-2.
[46] WANG Li, LIU Xian-jin, ZHANG Qiang, et al. Selection of DNA aptamers that bind to four organophosphorus pesticides[J]. Biotechnology Letters, 2012, 34(5): 869-874.
[47] CAO Fang-qi, LU Xin-wei, HU Xiao-long, et al. In vitro selection of DNA aptamers binding pesticide fluoroacetamide[J]. Biosci Biotech Bioch, 2016, 80(5): 823-832.
[48] EISSA S, ZOUROB M. Selection and characterization of DNA aptamers for electrochemical biosensing of carbendazim[J]. Analytical Chemistry, 2017, 89(5): 3 138-3 145.
[49] RAJENDRAN M, ELLINGTON A D. Selection of fluorescent aptamer beacons that light up in the presence of zinc[J]. Anal Bioanal Chem, 2008, 390(4): 1 067-1 075.
[50] KIM M, UM H J, BANG S, et al. Arsenic removal from vietnamese groundwater using the arsenic-binding DNA aptamer[J]. Environ Sci Technol, 2009, 43(24): 9 335-9 340.
[51] WU Yuan-gen, ZHAN Shen-shan, WANG Lu-mei, et al. Selection of a DNA aptamer for cadmium detection based on cationic polymer mediated aggregation of gold nanoparticles[J]. Analyst, 2014, 139(6): 1 550-1 561.
[52] QU Hao, CSORDAS A T, WANG Jin-peng, et al. Rapid and label-free strategy to isolate aptamers for metal ions[J]. Acs Nano, 2016, 10(8): 7 558-7 565.
[53] CHEN Yang, LI Hao-huan, GAO Tian, et al. Selection of DNA aptamers for the development of light-up biosensor to detect Pb(II)[J]. Sensor Actuat B-Chem, 2018, 254: 214-221.
[54] 周羽婷, 汤玉娇, 邵爽, 等. 构象转换型传感器对汞、铅、锶离子的同时检测[J]. 高等学校化学学报, 2019, 40(8): 1 621-1 627.
[55] KHOSHBIN Z, HOUSAINDOKHT M R, VERDIAN A. A low-cost paper-based aptasensor for simultaneous trace-level monitoring of mercury (II) and silver (I) ions[J]. Analytical Biochemistry, 2020, 597: 113689.
[56] NADAL P, PINTO A, SVOBODOVA M, et al. DNA Aptamers against the Lup an 1 Food Allergen[J]. PLoS One, 2012, 7(4): 1-8.
[57] TRAN D T, KNEZ K, JANSSEN K P, et al. Selection of aptamers against Ara h 1 protein for FO-SPR biosensing of peanut allergens in food matrices[J]. Biosensors & Bioelectronics, 2013, 43: 245-251.
[58] PINTO A, POLO P N, HENRY O, et al. Label-free detection of gliadin food allergen mediated by real-time apta-PCR[J]. Anal Bioanal Chem, 2014, 406(2): 515-524.
[59] EISSA S, ZOUROB M. In vitro selection of DNA aptamers targeting beta-lactoglobulin and their integration in graphene-based biosensor for the detection of milk allergen[J]. Biosensors & Bioelectronics, 2017, 91: 169-174.
[60] WANG Hong-yan, WANG Jine, SUN Na, et al. Selection and characterization of malachite green aptamers for the development of light-up probes[J]. Chemistry Select, 2016, 1(8): 1 571-1 574.
[61] NGUYEN D H, DEFINA S C, FINK W H, et al. Binding to an RNA aptamer changes the charge distribution and conformation of malachite green[J]. Journal of the American Chemical Society, 2002, 124(50): 15 081-15 084.
[62] JO M, AHN J Y, LEE J, et al. Development of single-stranded DNA aptamers for specific bisphenol a detection[J]. Oligonucleotides, 2011, 21(2): 85-91.
[63] HUANG Jin, CHEN Yan, YANG Liu, et al. Amplified detection of cocaine based on strand-displacement polymerization and fluorescence resonance energy transfer[J]. Biosensors & Bioelectronics, 2011, 28(1): 450-453.
[64] GU Chun-mei, LAN Tian, SHI Han-chang, et al. Portable detection of melamine in milk using a personal glucose meter based on an in vitro selected structure-switching aptamer[J]. Analytical Chemistry, 2015, 87(15): 7 676-7 682.
[65] DUAN Nuo, GONG Wen-hui, WU Shi-jia, et al. Selection and application of ssDNA aptamers against clenbuterol hydrochloride based on ssDNA library immobilized SELEX[J]. Journal of Agricultural and Food Chemistry, 2017, 65(8): 1 771-1 777.
[66] DUAN Nuo, GONG Wen-hui, WU Shi-jia, et al. An ssDNA library immobilized SELEX technique for selection of an aptamer against ractopamine[J]. Analytica Chimica Acta, 2017, 961: 100-105.
[67] WANG Ying, LI Jie, QIAO Pu, et al. Screening and application of a new aptamer for the rapid detection of sudan dye III[J]. Eur J Lipid Sci Tech, 2018, 120(6): 1700112.
[68] TIAN Hui-li, DUAN Nuo, WU Shi-jia, et al. Selection and application of ssDNA aptamers against spermine based on capture-SELEX[J]. Analytica Chimica Acta, 2019, 1 081: 168-175.
[69] HO L S, FOGEL R, LIMSON J L. Generation and screening of histamine-specific aptamers for application in a novel impedimetric aptamer-based sensor[J]. Talanta, 2020, 208: 120474.
[70] KWON Y S, AHMAD RASTON N H, GU M B. An ultra-sensitive colorimetric detection of tetracyclines using the shortest aptamer with highly enhanced affinity[J]. Chemical Communications, 2014, 50(1): 40-42.
[71] ZHANG Hui, MA Xiao-yuan, LIU Ying, et al. Gold nanoparticles enhanced SERS aptasensor for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus[J]. Biosensors & Bioelectronics, 2015, 74: 872-877.
[72] LI Yu-zhi, LU Chang, ZHOU Shuai-shuai, et al. Sensitive and simultaneous detection of different pathogens by surface-enhanced Raman scattering based on aptamer and Raman reporter co-mediated gold tags[J]. Sensor Actuat B-Chem, 2020, 317: 128182.
[73] WANG Xiao-le, HUANG Yu-kun, WU Shi-jia, et al. Simultaneous detection of Staphylococcus aureus and Salmonella typhimurium using multicolor time-resolved fluorescence nanoparticles as labels[J]. International Journal of Food Microbiology, 2016, 237: 172-179.
[74] LU Chun-xia, GAO Xiao-xu, CHEN Ya, et al. Aptamer-based lateral flow test strip for the simultaneous detection of Salmonella typhimurium, Escherichia coli O157:H7 and Staphylococcus aureus[J]. Anal Lett, 2020, 53(4): 646-659.
[75] HUANG Yu-kun, ZHANG Hui, CHEN Xiu-juan, et al. A multicolor time-resolved fluorescence aptasensor for the simultaneous detection of multiplex Staphylococcus aureus enterotoxins in the milk[J]. Biosensors & Bioelectronics, 2015, 74: 170-176.
[76] 王成全. 基于磁控适配体传感体系的农产品中典型霉菌毒素检测研究[D]. 镇江: 江苏大学, 2016: 85-86.
[77] QIAN Jing, REN Chan-chan, WANG Cheng-quan, et al. Magnetically controlled fluorescence aptasensor for simultaneous determination of ochratoxin A and aflatoxin B1[J]. Analytica Chimica Acta, 2018, 1 019: 119-127.
[78] WANG Qi, YANG Qing-li, WU Wei. Graphene-based steganographic aptasensor for information computing and monitoring toxins of biofilm in food[J]. Frontiers in Microbiology, 2020, 10: 3 139.
[79] 周佳伟. 量子点—适配体荧光传感器快速检测卡那霉素和妥布酶残留[D]. 镇江: 江苏大学, 2018: 37.
[80] 王叶. 基于核酸适配体探针结合荧光和微流控方法检测食品中抗生素残留研究[D]. 宁波: 宁波大学, 2017: 48.
[81] ZHANG Cun-zheng, WANG Li, TU Zhui, et al. Organophosphorus pesticides detection using broad-specific single-stranded DNA based fluorescence polarization aptamer assay[J]. Biosensors and Bioelectronics, 2014, 55: 216-219.
[82] 赵旭, 吴世嘉, 乐琳, 等. 基于核酸适配体的镉离子可视化检测方法[J]. 食品与机械, 2018, 34(6): 35-38.
[83] WU Shi-jia, DUAN Nuo, SHI Zhao, et al. Dual fluorescence resonance energy transfer assay between tunable upconversion nanoparticles and controlled gold nanoparticles for the simultaneous detection of Pb2+ and Hg2+[J]. Talanta, 2014, 128: 327-336.
[84] YAN Xi-luan, JIANG Meng-meng, JIAN Yu-ting, et al. Simultaneous aptasensor assay of ochratoxin A and adenosine triphosphate in beer based on Fe3O4 and SiO2 nanoparticle as carriers[J]. Analytical Methods, 2020, 12(17): 2 253-2 259.
[85] JIN Bi-rui, YANG Ye-xin, HE Rong-yan, et al. Lateral flow aptamer assay integrated smartphone-based portable device for simultaneous detection of multiple targets using upconversion nanoparticles[J]. Sensor Actuat B-Chem, 2018, 276: 48-56.
[86] HE Li-yong, SHEN Zhi-peng, WANG Jia-qi, et al. Simultaneously responsive microfluidic chip aptasensor for determination of kanamycin, aflatoxin M1, and 17 β-estradiol based on magnetic tripartite DNA assembly nanostructure probes[J]. Microchimica Acta, 2020, 187(3): 1-11.