Abstract
This review introduced the main slaughtering and processing enterprises, advanced equipment and intelligent technology at home and abroad. The research status and existing problems of existing technologies, were analyzed and expounded, and the development trend of slaughtering and processing intelligent technology and equipment were prospected.
Publication Date
4-28-2021
First Page
226
Last Page
232
DOI
10.13652/j.issn.1003-5788.2021.04.041
Recommended Citation
Jun, LI; Bin, XIE; Zhi-qiang, ZHAI; Peng, ZHANG; and Song-tao, HOU
(2021)
"Research progress of intelligent equipment and technology for livestock and poultry slaughter and processing,"
Food and Machinery: Vol. 37:
Iss.
4, Article 41.
DOI: 10.13652/j.issn.1003-5788.2021.04.041
Available at:
https://www.ifoodmm.cn/journal/vol37/iss4/41
References
[1] 中国人民共和国国家统计局. 年度数据. [2020-08-10]. http://data.stats.gov.cn/easyquery.htm?cn=C01&zb=A0D0P&sj=2019.
[2] 杨璐, 刘佳琦, 周海波, 等. 面向畜禽加工的智能化装备与技术研究现状和发展趋势[J]. 农业工程, 2019, 9(7): 42-55.
[3] 董雪艳, 葛琳琳, 吴昊. 浅谈畜禽屠宰方法现状[J]. 中国畜牧兽医文摘, 2016, 32(2): 31-32.
[4] 张奎彪, 贾自力. 家禽多段致昏屠宰方法[J]. 食品安全导刊, 2012(增刊1): 74-75.
[5] Marel. Stunning solutions and products. [2020-08-20]. http://wechat.marel.cn/product_category/击晕.
[6] Banss. Stunning equipment and technology. [2020-08-20]. https://banss.de/en/pig/#stunning.
[7] Frontmatec. Traditional-stunning-box-cattle-calves. [2020-08-20]. https://www.frontmatec.com/cn/beef-solutions/unclean-line/stunning/traditional-stunning-box-cattle-calves.
[8] Frontmatec. Carbon dioxide stunning system. [2020-08-20]. https://www.frontmatec.com/media/3935/frontmatec-co2-窒晕系统.pdf.
[9] TERLOUW Claudia, BOURGUE Cécile, DEISS Véronique. Consciousness, unconsciousness and death in the context of slaughter Part I: Neurobiological mechanisms underlying stunning and killing[J]. Meat Science, 2016, 118: 133-146.
[10] LLONCH P, RODRGUEZ P, CASAL N, et al. Electrical stunning effectiveness with current levels lower than 1A in lambs and kid goats[J]. Research in Veterinary Science, 2015, 98: 154-161.
[11] GERRITZEN M A, REIMERT H G M, HINDLE V A, et al. Multistage carbon dioxide gas stunning of broilers[J]. Poultry Science, 2013, 92(1): 41-50.
[12] 张欣, 罗招运, 胥蕾, 等. 屠宰前不同二氧化碳浓度的混合气体致晕对肉鹅肝脏颜色、脂质氧化及抗氧化能力的影响[J]. 动物营养学报, 2019, 31(4): 1 637-1 644.
[13] Marel. Nuova CoreTech. [2020-08-20]. http://marel.cn/行业/家禽加工/肉鸡加工/掏膛/掏膛.
[14] Meyn. Evisceration. [2020-08-20]. http://www.meyn-cn.com/html/1/62/178/350.html.
[15] 陈艳. 基于机器视觉的家禽机械手掏膛及可食用内脏分拣技术研究[D]. 武汉: 华中农业大学, 2018: 140-142.
[16] 陶凯. 基于机器视觉的家禽屠宰净膛系统的设计与试验[D]. 武汉: 华中农业大学, 2018: 59.
[17] 王树才, 陶凯, 李航. 基于机器视觉定位的家禽屠宰净膛系统设计与试验[J]. 农业机械学报, 2018, 49(1): 335-343.
[18] 熊利荣, 于阳, 王树才. 带有触觉系统的家禽屠宰净膛机械手的设计[J]. 华中农业大学学报, 2016, 35(6): 142-146.
[19] 于阳. 家禽屠宰净膛智能机械手触觉系统的研究[D]. 武汉: 华中农业大学, 2016: 35-39.
[20] 马朋巍. 扒取式家禽取内脏机械手结构及运动参数研究[D]. 北京: 中国农业机械化科学研究院, 2010: 8-25.
[21] 王猛. 夹取式家禽自动掏膛机械手结构和运动参数的研究[D]. 北京: 中国农业机械化科学研究院, 2014: 10-57.
[22] 王道路. 夹取式肉鸭掏膛机械手的设计研究[D]. 北京: 中国农业机械化科学研究院, 2017: 56.
[23] 王道路, 叶金鹏, 丁有河, 等. 肉鸭掏膛机改进设计与仿真分析及试验[J]. 食品与机械, 2017, 33(6): 93-100.
[24] Marel. Leg processing. [2020-08-20]. http://wechat.marel.cn/product_category/腿部加工.
[25] Marel. Processing of the front half of the breast. [2020-08-20]. http://wechat.marel.cn/product_category/胸脯前半部加工.
[26] Marel. Wing processing. [2020-08-20]. http://wechat.marel.cn/product_category/翅膀加工.
[27] Marel. Industry Manual-Beef processing. [2020-08-20]. http://wechat.marel.cn/industry/meat/?utm_source=wechat&utm_medium=referral&utm_campaign.
[28] Frontmatec. Automatic-hanging-primal-cutting. [2020-08-20]. https://www.frontmatec.com/cn/lamb-solutions/primal-cutting/automatic-primal-cutting/automatic-hanging-primal-cutting.
[29] Frontmatec. Manual-primal-cutting. [2020-08-20]. https://www.frontmatec.com/cn/lamb-solutions/primal-cutting/primal-cutting/manual-primal-cutting.
[30] Frontmatec. Automatic-primal-cutting. [2020-08-20]. https://www.frontmatec.com/cn/pork-solutions/primal-cutting/automatic-primal-cutting.
[31] Frontmatec. Aira-robots. [2020-08-20]. https://www.frontmatec.com/cn/pork-solutions/clean-line-chill-room/aira-robots.
[32] CLAUDON L, MARSOT J. Effect of knife sharpness on upper limb biomechanical stresses: A laboratory study[J]. International Journal of Industrial Ergonomics, 2006, 36(3): 239-246.
[33] 丛明, 王冠雄, PETER Xu. 屠宰机器人的研究现状与发展[J]. 机器人技术与应用, 2013(1): 18-23.
[34] 郭楠, 叶金鹏, 王子戡, 等. 畜禽肉品分割加工智能化发展现状及趋势[J]. 肉类工业, 2020(2): 37-41.
[35] 任涛, 李伟, 徐开春, 等. 猪体自动劈半机的研发[J]. 肉类工业, 2017(9): 49-56.
[36] 王树才. 一种家畜胴体多点夹紧分割装置: 201811585214.4[P]. 2019-02-19.
[37] 谢斌. 一种家畜胴体去腿装置: 201911376121.5[P]. 2020-05-05.
[38] 张德权. 羊胴体机器人自主分割方法及系统: 202010074636.6[P]. 2020-06-19.
[39] 张德权. 羊胴体计算机视觉辅助分割系统及其分割装置: 201610847356.8[P]. 2017-03-01.
[40] 陈军委. 一种羊胴体分割设备: 201921058610.1[P]. 2020-06-16.
[41] 杨华. 禽类胴体分割3P-2R混联机器人运动学研究[D]. 哈尔滨: 哈尔滨商业大学, 2016: 46.
[42] 孙鑫. 面向猪肉胴体分割的6-DOF混联机器人运动学分析与轨迹规划[D]. 哈尔滨: 哈尔滨商业大学, 2017: 63.
[43] 杜宇. 一种猪腹剖切机器人系统: 201921104153.5[P]. 2020-05-19.
[44] 王鹤. 一种猪腹剖切机器人系统的设计与实现[D]. 大连: 大连理工大学, 2019: 54-67.
[45] CONG Ming, WANG He, REN Xiang, et al. Design of Porcine abdomen cutting robot system based on binocular vision[C]//2019 14th International Conference on Computer Science & Education. New Pork: IEEE, 2019: 188-193.
[46] LIU Yi, CONG Ming, ZHENG Hua-dong, et al. Porcine automation: Robotic abdomen cutting trajectory planning using machine vision techniques based on global optimization algorithm[J].Computers and Electronics in Agriculture, 2017, 143: 193-200.
[47] Frontmatec. PH-K21. [2020-08-20]. https://www.frontmatec.com/cn/other/instruments/quality-control/ph-k21.
[48] Frontmatec. NitForm. [2020-08-20]. https://www.frontmatec.com/cn/other/instruments/carcass-grading-traceability/nitfom.
[49] Marel. Overhead classification and sorting. [2020-08-20]. http://wechat.marel.cn/product_category/高架分级和分选.
[50] Marel. Classifier. [2020-08-20]. http://wechat.marel.cn/product_category/分级机.
[51] BARBIN Douglas F, ELMASRY Gamal, SUN Da-wen, et al. Predicting quality and sensory attributes of pork using near-infrared hyperspectral imaging[J]. Analytica Chimica Acta, 2012, 719: 30-42.
[52] BARBIN Douglas F, ELMASRY Gamal, SUN Da-wen, et al. Near-infrared hyperspectral imaging for grading and classification of pork[J]. Meat Science, 2012, 90(1): 183-195.
[53] ELMASRY Gamal, SUN Da-wen, ALLEN Paul. Near-infrared hyperspectral imaging for predicting colour, pH and tenderness of fresh beef[J]. Journal of Food Engineering, 2011, 110(1): 127-140.
[54] ANDERSEN Petter Vejle, WOLD Jens Petter, GJERLAUG-ENGER Eli, et al. Predicting post-mortem meat quality in porcine longissimus lumborum using Raman, near infrared and fluorescence spectroscopy[J]. Meat Science, 2018, 145: 94-100.
[55] KIPPER M, MARCOUX M, ANDRETTA I, et al. Assessing the accuracy of measurements obtained by dual-energy X-ray absorptiometry on pig carcasses and primal cuts[J]. Meat Science, 2019, 148: 79-87.
[56] TAHERI-GARAVAND Amin, FATAHI Soodabeh, OMID Mahmoud, et al. Meat quality evaluation based on computer vision technique: A review[J]. Meat Science, 2019, 156: 183-195.
[57] BRETHOUR J R. Using serial ultrasound measures to generate models of marbling and backfat thickness changes in feedlot cattle[J]. Journal of animal science, 2000, 78(8): 2 055-2 061.
[58] 闫忠心. 肉类智能分级系统: 201821625619.1[P]. 2019-11-19.
[59] 贾渊. 一种基于图像处理的猪肉外在品质在线分级装置: 201020524094.X[P]. 2011-03-30.
[60] 陈林. 近红外在线肉品分级自动检测装置: 201020193726.9[P]. 2010-12-22.
[61] 郭楠, 王丽红, 丁有河, 等. 气动式羊胴体自动分级系统开发[J]. 肉类工业, 2017(11): 49-51.
[62] 韩宏宇. 基于深度学习的猪胴体图像分级系统设计与实现[D]. 沈阳: 沈阳工业大学, 2018: 44.
[63] 吴贵茹. 基于计算机视觉的牛肉产量自动分级技术研究[D]. 南京: 南京农业大学, 2012: 60-61.
[64] 伍学千. 基于计算机视觉技术的猪肉品质检测与分级研究[D]. 杭州: 浙江大学, 2010: 77-78.
[65] 伍学千, 廖宜涛, 樊玉霞, 等. 基于KFCM和改进分水岭算法的猪肉背最长肌分割技术[J]. 农业机械学报, 2010, 41(1): 172-176.
[66] 李明静. 计算机视觉在牛肉大理石花纹自动分级中的应用研究[D]. 杨凌: 西北农林科技大学, 2007: 41.
[67] 刘晓晔. 基于近红外光谱技术的牛肉在线分级及分类初探[D]. 北京: 中国农业科学院, 2012: 45.
[68] 谢新月. 基于光谱特性肉品种类及新鲜度识别方法研究[D]. 长春: 吉林大学, 2013: 51.
[69] 姜新华, 薛河儒, 郜晓晶, 等. 高光谱图像与稀疏核典型相关分析冷鲜羊肉新鲜度无损检测[J]. 光谱学与光谱分析, 2018, 38(8): 2 498-2 504.
[70] 陈丽. 羊胴体分级模型与分级评定技术研究[D]. 北京: 中国农业科学院, 2011: 50-51.
[71] 赵杰文, 黄晓玮, 邹小波, 等. 基于嗅觉可视化技术的猪肉新鲜度检测[J]. 食品科学技术学报, 2013, 31(1): 9-13.
[72] 黄星奕, 周芳, 蒋飞燕. 基于嗅觉可视化技术的猪肉新鲜度等级评判[J]. 农业机械学报, 2011, 42(5): 142-145, 124.
[73] NASSY Gilles, 黄亚宇, 孟庆翔. 控制猪肉品质的新型感应器: 用于屠宰和加工阶段测定猪胴体组分和评估猪肉品质[J]. 肉类研究, 2015, 29(2): 21-24.