Abstract
In order to optimize the Ultraviolet (UV) spectrophotometric method for determination of polyphenols inhibiting LOX activity, and to explore the influences of the buffer systems and pH on LOX enzyme activity and polyphenol auto-oxidation, this paper studied the changes of LOX enzyme activity and the auto-oxidation of gallic acid, quercetin, catechin and 3,4-dihydroxyphenylacetic acid under different buffer systems and pH conditions. The results showed that the activity of LOX was stronger under alkaline conditions, and the 4 polyphenols had the weakest self-oxidation in the borate system and the strongest self-oxidation in the Tris-HCl system. The higher the pH in each system, the stronger the self-oxidation of the 4 polyphenols, and the more intermediate and final products of auto-oxidation reflected in the UV spectrum. Finally, the pH 7.5 borate buffer was determined as the detection buffer system. It was found that LOX enzyme activity decreased first and then rised with the increase of 4 kinds of polyphenol concentration. The inhibitory effect of 4 kinds of polyphenols on LOX enzyme activity was in order: quercetin>catechin>gallic acid>3,4-Dihydroxyphenylacetic acid.
Publication Date
4-28-2021
First Page
32
Last Page
41
DOI
10.13652/j.issn.1003-5788.2021.04.006
Recommended Citation
Feng-ling, YE; Li-rong, JIA; Qiang, HE; and Yi, DONG
(2021)
"The effect of pH and buffer systems on the inhibition of lipoxygenase activity by plant polyphenols,"
Food and Machinery: Vol. 37:
Iss.
4, Article 6.
DOI: 10.13652/j.issn.1003-5788.2021.04.006
Available at:
https://www.ifoodmm.cn/journal/vol37/iss4/6
References
[1] 李彩凤, 赵丽影, 陈业婷, 等. 高等植物脂氧合酶研究进展[J]. 东北农业大学学报, 2010, 41(10): 143-149.
[2] 曲清莉, 傅茂润, 代红飞. 脂氧合酶(LOX)在脂肪酸氧化中的作用研究进展[J]. 食品研究与开发, 2015, 36(10): 137-142.
[3] 何婷, 赵谋明, 崔春. 脂肪氧合酶的酶学特性及其活性抑制机理的研究进展[J]. 食品工业科技, 2008(2): 291-293.
[4] LAMPI A, YANG Zhen, MUSTONEN O, et al. Potential of faba bean lipase and lipoxygenase to promote formation of volatile lipid oxidation products in food models[J]. Food Chemistry, 2020, 311: 125982.
[5] 吴秋昊, 贾利蓉, 陈安特, 等. 热处理对核桃仁脂氧化酶类活性的影响[J]. 食品与机械, 2017, 33(2): 145-147, 204.
[6] 吴桂玲, 胡丽, 冯定坤, 等. 超声波辅助提取蓝莓叶总黄酮及对脂氧合酶的抑制[J]. 食品研究与开发, 2020, 41(8): 55-60.
[7] 吴桂玲, 蒋信星, 阮代锬, 等. 黑米总黄酮提取工艺优化及其对茶叶脂肪氧合酶的抑制[J]. 粮食与油脂, 2019, 32(11): 89-92.
[8] 吴桂玲, 孙赛兰, 冯定坤, 等. 虎杖根中黄酮类化合物对脂氧合酶活性抑制[J]. 广州化工, 2020, 48(3): 63-65, 94.
[9] 候蕊. 谷子脂氧合酶(LOX)与小米储藏过程中褪色关系的研究[D]. 晋中: 山西农业大学, 2016: 8.
[10] 郝瑞丽, 谢仲梅, 申慧芳, 等. 谷子脂氧合酶(LOX)活性测定条件的研究[J]. 山西农业大学学报(自然科学版), 2018, 38(8): 71-76.
[11] 刘夫国, 金邦荃, 牛丽影, 等. 鲜食玉米脂氧合酶的酶学性质[J]. 食品科学, 2013, 34(3): 198-201.
[12] 吴桂玲, 代虹镜, 邓維先, 等. 毛尖茶叶中的黄酮类化合物对脂氧合酶的抑制性[J]. 云南化工, 2019, 46(4): 65-67.
[13] SHARMA R, PADWAD Y. Plant polyphenol-based second-generation synbiotic agents: Emerging concepts, challeng-es, and opportunities[J]. Nutrition, 2020, 77: 110785.
[14] 郑红梅, 王少英, 史新娥. 植物多酚的抗氧化作用及其改善肉质的机制[J]. 动物营养学报, 2020, 32(5): 2 037-2 045.
[15] 谢三都, 林雅男, 黄晓美. 莲蓬醇提物中槲皮素的鉴定及生物活性[J]. 食品与机械, 2016, 32(6): 44-48.
[16] GRANATO M, RIZZELLO C, GILARDINI MONTANI M S, et al. Quercetin induces apoptosis and autophagy in primary effusion lymphoma cells by inhibiting PI3K/AKT/mTOR and STAT3 signaling pathways[J]. The Journal of Nutritional Biochemistry, 2017, 41: 124-136.
[17] KHATUN S, RIYAZUDDEEN, YASMEEN S, et al. Calorimetric, spectroscopic and molecular modelling insight into the interaction of gallic acid with bovine serum albumin[J]. The Journal of Chemical Thermodynamics, 2018, 122: 85-94.
[18] PEREIRA A D S, DE OLIVEIRA L S, LOPES T F, et al. Effect of gallic acid on purinergic signaling in lymphocytes, platelets, and serum of diabetic rats[J]. Biomedicine & Pharmacotherapy, 2018, 101: 30-36.
[19] 王学渊, 刘静宜, 洪艳平, 等. 不同类型江西名茶儿茶素含量及体外抗氧化能力比较[J]. 食品与机械, 2019, 35(6): 152-158.
[20] 但飞君, 田瑛, 董俊兴. 3,4-二羟基苯乙酸的合成[J]. 化学试剂, 2005(10): 623-624.
[21] 张晓婷, 王满生, 邱浩楠, 等. 青叶苎麻叶多酚超声辅助提取工艺优化及抗氧化活性研究[J]. 食品与机械, 2020, 36(12): 152-158.
[22] 蔡霄英, 龚茵茵. 食用花卉中的多酚类成分及生物活性研究进展[J]. 食品与机械, 2018, 34(11): 178-182, 189.
[23] CHEN Xing, LIANG Li, HAN Cong. Borate suppresses the scavenging activity of gallic acid and plant polyphenol extracts on DPPH radical: A potential interference to DPPH assay[J]. LWT-Food Science and Technology, 2020, 131: 109769.
[24] ZHU Qin-yan, ZHANG An-qi, TSANG D, et al. Stability of green tea catechins[J]. J Agric Food Chem, 1997, 45(12): 4 624-4 628.
[25] 肖楠, 朱永春, 宝阿敏, 等. 邻苯三酚自氧化机理的量子化学研究[J]. 计算机与应用化学, 2014, 31(10): 1 165-1 169.
[26] 韩少华, 朱靖博, 王妍妍. 邻苯三酚自氧化法测定抗氧化活性的方法研究[J]. 中国酿造, 2009(6): 155-157.
[27] 贾红玉, 王亚森, 田晓辉, 等. 邻苯三酚自氧化法在SOD活性测定中的应用[J]. 河北大学学报(自然科学版), 2018, 38(3): 284-290.
[28] 刘夫国. 甜玉米脂氧合酶的分离纯化及与风味的关系研究[D]. 南京: 南京师范大学, 2013: 6-7.
[29] 宁晁. 影响酶活性的因素综述[J]. 科技经济导刊, 2018, 26(31): 125-127.
[30] 俞梅兰, 余燕影, 曹树稳. 槲皮素自氧化作用影响其超氧阴离子自由基清除能力的研究[J]. 食品工业科技, 2006(3): 75-78.
[31] ZHOU Ai-ling, SADIK O A. Comparative analysis of quercetin qxidation by electrochemical, enzymatic, autoxidation, and free radical generation techniques: A mechanistic study[J]. Journal of Agricultural and Food Chemistry, 2008, 56(24): 12 081-12 091.
[32] 荣家闵, 张仁文. 槲皮素体外抗氧化活性研究[J]. 科学技术创新, 2019(29): 43-44.
[33] LEI Rong, XU Xiao, YU Fei, et al. A method to determine quercetin by enhanced luminol electrogenerated chemiluminescence (ECL) and quercetin autoxidation[J]. Talanta, 2008, 75(4): 1 068-1 074.
[34] WANG Qing-yang, LEONG W F, ELIAS R J, et al. UV-C irradiated gallic acid exhibits enhanced antimicrobial activity via generation of reactive oxidative species and quinone[J]. Food Chemistry, 2019, 287: 303-312.
[35] 吴雪钗, 于波涛, 侯艾林, 等. 没食子酸稳定性研究[J]. 西南国防医药, 2006, 16(5): 484-485.
[36] 郭远华, 邹国林. 儿茶素对超氧阴离子自由基的清除及其自氧化作用研究[J]. 氨基酸和生物资源, 2001(2): 10-12.
[37] WU Jing, WANG Hua, LIU Fu, et al. Detection of catechin based on its electrochemical autoxidation[J]. Talanta, 2005, 65(2): 511-517.
[38] 何建波, 孟凡顺, 周园, 等. 不同pH值下儿茶素氧化的现场光谱电化学研究[J]. 食品科学, 2009, 30(5): 11-15.
[39] CAO Qiong-ju, HUANG Yuan, ZHU Quan-fei, et al. The mechanism of chlorogenic acid inhibits lipid oxidation: An investigation using multi-spectroscopic methods and molecular docking[J]. Food Chemistry, 2020, 333: 127528.
[40] BOOTS A W, LI Hui, SCHINS R P F, et al. The quercetin paradox[J]. Toxicology and Applied Pharmacology, 2007, 222(1): 89-96.