Abstract
In order to improve the drying efficiency of hard shell nut products, a new type of drum catalytic infrared drying equipment was developed in this paper. On the basis of the developed equipment, the effects of technological parameters on dehydration rate, color and shell opening rate were investigated. The drying time, drying curve, drying rate curve and energy consumption of the drum catalytic infrared-hot air drying were compared with that of the single hot air drying. The results showed that the catalytic infrared temperature, distance and drum rotational speed all had significant influence on drying performance and product quality. After drum catalytic infrared pre-drying 9.5 min at the optimal radiation distance of 30 cm, radiation temperature of 450 ℃, drum speed of 1.5 r/min and then continuing to hot air drying 16 h at temperature of 43 ℃ and air speed of 3 m/s, compared with the single hot air drying (20 h), the drying rate was significantly improved, the drying time was shortened 19.2%, the energy consumption was saved 11.6%, and the dried walnut quality was good.
Publication Date
5-28-2021
First Page
163
Last Page
168,193
DOI
10.13652/j.issn.1003-5788.2021.05.030
Recommended Citation
Wen-juan, QU; Wei, FAN; Hai-le, MA; Jun-ling, SHI; and Zhong-li, PAN
(2021)
"Experiment and energy consumption analysis of walnut drum catalytic infrared-hot air drying,"
Food and Machinery: Vol. 37:
Iss.
5, Article 30.
DOI: 10.13652/j.issn.1003-5788.2021.05.030
Available at:
https://www.ifoodmm.cn/journal/vol37/iss5/30
References
[1] 朱德泉, 马锦, 蒋锐, 等. 山核桃坚果分段变功率微波干燥工艺参数优化[J]. 农业工程学报, 2016, 32(15): 268-274.
[2] 王冰, 杨莉玲, 毛吾兰, 等. 新疆核桃干燥现状与技术优化[J]. 新疆农机化, 2017(4): 29-32.
[3] 邱丽. 不同干燥方法对核桃品质及不饱和脂肪酸稳定性的影响[J]. 农业与技术, 2018, 38(8): 65.
[4] 王庆惠, 闫圣坤, 李忠新, 等. 核桃深层热风干燥特性研究[J]. 食品与机械, 2015, 31(6): 60-63.
[5] 刘美娟, 吴本刚, 潘忠礼, 等. 胡萝卜丁催化式红外干法杀青同步脱水试验及动力学研究[J]. 中国食品学报, 2019, 19(1): 55-64.
[6] 张磊, 余筱洁, 白竣文, 等. 红外干燥方式对紫甘蓝干燥特性的影响[J]. 现代食品科技, 2017, 33(12): 202-209, 176.
[7] LIU Yun-hong, MIAO Shuai, WU Jian-ye, et al. Drying characteristics and modeling of vacuum far-infrared radiation drying of flos lonicerae[J]. Journal of Food Processing and Preservation, 2015, 39(4): 338-348.
[8] 付瑞鹏, 王华, 张昂, 等. 催化式红外辐射对葡萄籽灭菌的影响[J]. 中国食品学报, 2019, 19(10): 150-156.
[9] NOWAK D, LEWICKI P P. Infrared drying of apple slices[J]. Innovative Food Science & Emerging Technologies, 2004, 5(3): 353-360.
[10] SAKAI N, HANZAWA T. Applications and advances in far-infrared heating in Japan[J]. Trends in Food Science & Technology, 1994, 5(11): 357-362.
[11] GABEL M M, PAN Zhong-li, AMARATUNGA K S P, et al. Catalytic infrared dehydration of onions[J]. Journal of Food Science, 2006, 71(9): E351-E357.
[12] 郑霞, 万江静, 高振江, 等. 红外干燥技术在果蔬加工中的研究现状与展望[J]. 江苏农业科学, 2015, 43(10): 1-6.
[13] 陈文敏, 彭星星, 孙田奎, 等. 红外温度对超声处理红枣的干燥特性及品质影响[J]. 现代食品科技, 2015, 31(6): 224-229, 235.
[14] CHEN Chang, VENKITASAMY C, ZHANG Wei-peng, et al. Effect of step-down temperature drying on energy consumption and product quality of walnuts[J]. Journal of Food Enigineering, 2020, 285: 110105.
[15] LEE E H. A review on applications of infrared heating for food processing in comparison to other industries[J]. Innovative Food Processing Technologies, 2021(9): 431-455.
[16] 吴本刚. 胡萝卜催化式红外干法杀青—红外热风顺序联合干燥技术研究[D]. 镇江: 江苏大学, 2014: 27-28.
[17] PAN Zhong-li, SHIH C, MCHUGH T H, et al. Study of banana dehydration using sequential infrared radiation heating and freeze-drying[J]. LWT-Food Science and Technology, 2008, 41(10): 1 944-1 951.
[18] 徐保国, 周天楚, 魏本喜, 等. 催化式红外辐照改善樱桃番茄去皮效果及品质[J]. 农业工程学报, 2018, 34(24): 299-305.
[19] 吴小华, 马渊博, 宁旭丹, 等. 西洋参分段式热风干燥动力学模型构建[J]. 农业工程学报, 2020, 36(5): 318-324.
[20] 张茜, 肖红伟, 代建武, 等. 哈密瓜片气体射流冲击干燥特性和干燥模型[J]. 农业工程学报, 2011, 27(增刊1): 382-388.
[21] VIDYARTHI S K, EI-MASHAD H M, KHIR R, et al. Tomato peeling performance under pilot scale catalytic infrared heating[J]. Journal of Food Engineering, 2019, 246: 224-231.
[22] 姜苗. 云南核桃热风干燥特性及其传质模拟[D]. 昆明: 昆明理工大学, 2013: 28-32.
[23] 张波. 核桃射频热风联合干燥特性及品质变化研究[D]. 咸阳: 西北农林科技大学, 2017: 15-21.
[24] ATUNGULU G G, TEH H E, WANG Tian-xin, et al. Infrared pre-drying and dry-dehulling of walnuts for improved processing efficiency and product quality[J]. Applied Engineering in Agriculture, 2013, 29(6): 961-971.